跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇湘茹
研究生(外文):Hsiang-Ju Su
論文名稱:鋰錳氧正極材料之表面活性劑對電化學性能的影響
論文名稱(外文):Effect of surfactant on the electrochemical properties of LiMn2O4 cathode material for Lithium-ion battery
指導教授:楊永欽楊永欽引用關係
指導教授(外文):Yung-Ching Yang
口試委員:洪逸明吳溪煌
口試委員(外文):I-Ming HungShe-Huang Wu
口試日期:2012-06-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:固相反應法LiMn2O4尖晶石
外文關鍵詞:LiMn2O4spinelsolid state reaction method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗主要是利用固相反應法(solid state reaction method)的製程技術,並利用中性界面活性劑及三區塊共聚高分子P123為模板,在酒精溶劑裡形成有機物自組裝體,而以LiCH3COO‧2H2O及Mn(CH3COO)2‧4H2O作為無機物骨架的前驅物,來合成出尖晶石(Spinel)結構的 LiMn2O4 材料,探討界面活性劑含量的不同,對於粉體的結構、顆粒大小、表面積改變,而材料表面積大小會影響到電解質與正極材料之濕潤結果,進而影響到實際反應面積及放電效率,進而探討表面積對於電性影響。
由XRD分析得知,以固相反應法合成出的LiMn2O4為單一尖晶石相,添加界面活性劑並不會影響原本尖晶石結構,藉由BET分析結果得知,隨著界面活性劑量的增加,比表面積也隨之改變,在SEM的觀察下,顯示出LiMn2O4在添加不同界面活性劑後可形成不同形狀的微胞,微胞有助於電容量的增加。實驗顯示比表面積在0.4 ~ 1.2 m2/g,較能有效提升電容量且大電流放電效率較接近低電流放電效率,電容量最高可達84.6 mAh/g,依照不同濃度之P123,以1.42M之鋰離子擴散係數為6.23x10-12 cm2‧s-1,且比表面積為1.18 m2/g,在不同速率充放電下,大電流放電與低電流放電接近。相較於不同濃度之F127,以3.43M之Li+ 離子擴散係數1.37x10-11 cm2‧s-1為最佳,其比表面積為0.70 m2/g,雖電容量最高,但在大電流放電時較易衰退。實驗結果顯示以P123體積莫耳濃度為1.42M較佳。



The purpose of this reserch will try to fabricate the LiMn2O4 with ordered spinel structure. The three block copolymer surfactant(P123)was employ as the structure agents for synthesizing the high specific surface area in LiMn2O4 through the solid state reaction method. The LiCH3COO‧2H2O and Mn(CH3COO)2‧4H2O are as the precursors for the inorganic part of cathode (LiMn2O4). Discuss the different content of surfactant with the structure of the powder particle size, specific surface area, while the material specific surface area will affect the moist results of the electrolyte and cathode material, so affecting the actual reaction area and discharging efficiency. That investigating the affection between specific surface area and electrical attributes.
According to XRD patterns, the solid state reaction method synthesis of LiMn2O4 is a single spinel phase. By BET analysis results indicated that adding a surfactant doesn’t affect the original spinel structure. In the SEM observations, after different surfactants are added in LiMn2O4, that become various formation of micelles and micelles contribute to the increase of specific capacity. By this reserch, specific surface area in 0.4 ~ 1.2 m2/g compared with the capacitance can effectively enhance the efficiency and high current efficiency of discharge is closer to the lower current discharge. And the specific capacity can up to 84.6 mAh/g, in accordance with different concentrations of P123 surfactant 1.42M that the Li+ ion diffusion coefficient is 6.23x10-12 cm2 s-1, and specific surface area of 1.18 m2/g. Under the different rates of charging and discharging, the higher will close to lower. However compared with different concentrations of F127 surfactant 3.43M of the Li+ ion diffusion coefficient of 1.37x10-11 cm2s-1 is the best, the specific surface area of 0.70 m2/g. Although the maximum specific capacity, but higher than in the high-current discharge easy recession. The experimental results show that the better to add P123 surfactant 1.42M because the high current efficiency of discharge is closer to the lower current discharge.


目 錄
摘 要 i
ABSTRACT ii
致謝 iv
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 鋰離子電池簡介 3
2.1.1 鋰離子二次電池與工作原理 3
2.1.2 鋰離子電池之正極材料 5
2.1.3 鋰離子電池之理論電容量 6
2.2 LiMn2O4之特性 6
2.2.1 LiMn2O4之晶體結構 6
2.2.2 LiMn2O4尖晶石之Jahn-Teller 效應 9
2.3 LiMn2O4粉末之合成方法 11
2.4 中孔洞材料的介紹 11
2.4.1 中孔洞材料的研究與發展 17
2.4.2 自組合反應法簡介 19
2.4.3 界面活性劑性質介紹 22
第三章 實驗方法與步驟 28
3.1 以低溫固相反應法製備 LiMn2O4 粉末 28
3.2 極片製作與硬幣型鋰電池(coin cell)組裝流程 30
3.3 材料性質分析 33
3.3.1 X光繞射分析 33
3.3.2 場發射式電子掃描顯微鏡 33
3.3.3 BET粒子表面積分析 33
3.3.4 連續循環充放電測試 (Galvanostatically Cycled) 34
3.3.5 交流阻抗分析 34
3.3.6 循環伏安法分析 35
第四章 結果與討論 36
4.1 LiMn2O4之合成及性質 36
4.1.1 LiMn2O4粉體之X光繞射分析 36
4.1.2 LiMn2O4晶格常數與晶格參數的計算 38
4.2 LiMn2O4之比表面積與表面形貌分析 40
4.2.1 比表面積對於表面形貌的影響 40
4.2.2 氮氣等溫吸/脫附分析 44
4.3 不同濃度界面活性劑下對於電性之影響 47
4.3.1 不同濃度界面活性劑在0.1 C下之電容量 47
4.3.2 不同充放電速率下之電容量 50
4.4 不同濃度界面活性劑下對於電化學效應之影響 56
4.4.1 交流阻抗 56
4.4.2 鋰離子擴散係數計算 59
4.4.3 循環伏安 62
第五章 結論 65
參考文獻 66




參考文獻

[1]R. Koksbang, J. Barker, H. Shi, M.Y. Saidi. ,“Cathode Materials for Lithium Rocking Chair Batteries” Solid State Ionics, 1995,84, 1-21.
[2]D.W. Murphy, F.J. Di Salvo, J.N. Carides and J.V. Waszczak. ,“Topochemical Reactions of Rutile Related Structures with Lithium” Materials Research Bulletin, 1978,13,1395-1402.
[3]洪為民,“二次鋰離子電池產品介紹和性能介紹’’,工業材料雜誌,1996,117, 54-62.
[4]楊家諭,“二次鋰離子電池性能介紹’’,工業材料雜誌,1997,126,115-124.
[5]蕭光哲,“下世代動力鋰電池正極材料研究概況’’,工業材料雜誌,2012, 303, 159-169.
[6]吳嘉文,“中孔洞奈米材料之孔洞方向控制及其應用’’,工業材料雜誌,2009, 303,129-130.
[7]G. Pistoria. ,“Lithium Batteries: New Materials, Developments and Perspectives” Elsevier, 1994,Chap.1, 3 .
[8]M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P.Grover. ,“Synthesis and Structure Characterization of the Normal Spinel Li[Ni2O4]” Materials Research Bulletin, 1985, 20,1137-1146 .
[9]Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi and M.Leonini. ,“Solid- State Reaction Study on the System Ni-Li2CO3” Solid State Ionics,1989,32-33, 398-408.
[10]J. Morales, C. Peraz-Vicente and J. L. Tirado. ,“Cation Distribution and Chemical Deintercalation of Li1-XNi1+XO2” Materials ResearchBulletin,1990,25,623-630.
[11]“Battery Recall Update”, Advances Battery Technology,1989, 25,4.
[12]M. Armand, D.W. Murphy, J. Broadhead, and B.C.H. Steele. ,“Materials for advanced batteries” New York, Plenum Press, 1980, 2, 381.
[13]E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner and H. W. Lin. ,“A Rechargeable Li/LixCoO2 Cell” Journal of Power Sources, 1987, 21, 25-31.
[14]K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough. ,“LixCoO2 (0[15]H. J. Orman and P. J. Wiseman. ,“Cobalt (Ⅲ) Lithium-Oxide,Colio2-Structure Refinement by Power Neutron-Diffraction” Acta Crystallographica, 1984,40, 12-16.
[16]Mendiboure, C. Delmas and P. Hagemmuller. ,“New Layered Structure Obtained By Electrochemical Deintercalation of the Metastable Li xCoO2 (O2) Variety” Materials Research Bulletin, 1984,19,1383-1392.
[17]J. M. Tarascon and D. Guyomard. ,“The Li1+xMn2O4/C Rocking-Chair System: A Review” Electrochimica Acta, 1993,38,1221-1231.
[18]J. M. Tarascon and D. Guyomard. ,“Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathode (0[19]J. M. Tarascon, D. Guyomard and G. L. Baker. ,“An Update of the Li Metal-free Rechargeable Battery Based on Li1+xMn2O4 Cathode and Carbon Anodes” Journal of Power Sources, 1993,44,689-700.
[20]J.C. Hunter. ,“Preparation of A New Crystal Form of Manganese Dioxide: λ-MnO2” J. Solid State Chem, 1981,39,142.
[21]J. M. Tarascan, E. Wang and F. K. Shokochi. ,“The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells” J.Electrochem. Soc.,1991,138, 2859 .
[22]V. S. Pervov, I. A. Kedrinskii and E. V. Makhonina. ,“Cathode Materials for Rechargeable Lithium Batteries” Inorganic Materials, 1997, 33(9),869 .
[23]Friedrich Walz. ,“The Verwey Transition - a Topical Review” J.Phys.:Condens. Matter., 2002, 14, R285-R340.
[24]A.R. West. ,“Solid State Chemistry and Its Applications” John Wiley & Sons, New York, 310.
[25]A. Yamada. ,“Lattice Instability in Li(LixMn2-x)O4” J. Solid State Chemistry, 1996,122, 160.
[26]Chuanyun Wan. , “Synthesis of spinel LiMn2O4 using direct solid state reaction” Materials Letters, 2002,56, 357-359.
[27]Saidi M Y,Barker J,Koksbang R. ,“An electrochemical investigation into the lithium insertion properties of LixCoO2” Electrochimica Acta, 1996,41,2481.
[28]Xian-Ming Liu, Zheng-Dong Hung, Seiwoon Oh, Peng-cheng Ma. ,“Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocompsite as cathode material for Li-ion batteries” Journal of Power Source, 2010,195, 4290-4296.
[29]B. C. H. Steele, C. A. Leach, R. A. Rudkin, N. Khan and M.H. Huang. Fuel Cell Seminar in Arizona (USA),1990,123.
[30]Nguyen Quang Minh. ,“Solid oxide fuel cell technology - features and applications” Solid State Ionics, 2004,174, 271–277.
[31]Subhash Singhal. ,“Advances in solid oxide fuel c ell technology” Solid State Ionics, 2000,135, 305–313.
[32]International Union of Pure and Applied Chemistry – IUPAC. Manual of Symbols and Terminology, Appendix 2, Part 1. ,“Colloid and Surface Chemistry” Pure Applied Chemistry, 1972,31, 578.
[33]楊家銘,“奈米孔洞材料之物理吸脫附分析”,科儀新知,2005,第二十六卷,第六期,32-38。
[34]G. Q. Lu and X. S. Zhao. ,“Nanoporous Materials:Science and Engineering” Imperial College Press, 2004, 317-364.
[35]王明光,王敏昭,實用儀器分析,合記,2003,125-159。
[36]M. Kruk and M. Jaroniec. ,“Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials” Chemistry of Materials, 2001, 13, 3169-3183.
[37]C. T. Kresge, M. E. Leonowicz, W. J. Roth; J. C. Vartuli; J. S. Beck. ,“Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism” Nature, (London, United Kingdom) ,1992, 359, 710-712.
[38]J. S. Beck; J. C. Vartuli; W. J. Roth; M. E. Leonowicz; C. T. Kresge; K. D. Schmitt; C. T. W. Chu; D. H. Olson; E. W. Sheppard; et al. ,“A new family of mesoporous molecular sieves prepared with liquid crystal templates” Journal of the American Chemical Society, 1992,114, 10834-10843.
[39]J. C. Vartuli; C. T. Kresge; W. J. Roth; S. B. McCullen; J. S. Beck; K. D. Schmitt; M. E. Leonowicz; J. D. Lutner; E. W. Sheppard. ,“Designed synthesis of mesoporous molecular sieve systems using surfactant-directing agents” Advanced Catalysts and Nanostructured Materials, 1996, 1-19.
[40]D. Zhao; Q. Huo; J. Feng; B. F. Chmelka; G. D. Stucky. ,“Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures” Journal of the American Chemical Society, 1998, 120, 6024-6036.
[41]D. Zhao; J. Feng; Q. Huo; N. Melosh; G. H. Frederickson; B. F. Chmelka; G. D. Stucky. ,“Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores” Science (Washington, D.C.) , 1998, 279, 548-552.
[42]M. Imperor-Clerc; P. Davidson; A. Davidson. ,“Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers” Journal of the American Chemical Society, 2000, 122, 11925-11933.
[43]C. J. Brinker, Y. Lu, A. Sellinger and H. Fan. ,“Evaporation-Induced Self-Assembly :Nanostructures Made Easy” Advanced Materials, 1999, 11, 579-585.
[44]P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky. ,“Generalized syntheses of large-pore mesoporous metal oxide with semicrystalline frameworks” Nature,1998,396, 152-155 .
[45]D. Grosso, G. J. A. A. Soler-Illia, E. Crepaldi and C. Sanchez. ,“Nanocrystalline transition metal oxide spheres with controlled multi-scale porosity” Adv. Funct. Mater., 2003,13, 37-42 .
[46]G. J. de A. A.Soler-Illia, E. L. Crepaldi, D. Grosso and C. Sanches. ,“Block copolymer-templated mesoporous oxides” Current Opinion in Colloid and Interface Science., 2003, 8, 109-126.
[47]F. Schüth, Kenneth S. W. Sing, Jens WeitKamp. ,“Handbook of Porous Solids” WILEY-VCH, 2002, 3, 1313-1315.
[48]王世榮, 李祥高, 劉東志, 表面活性劑化學, 化學工業, 2005, 1-26.
[49]張驊, 胡耿源, 表面活性劑化學, 浙江大學出版社,1996, 173-182.
[50]Y. Wan and D. Zhao ,“On the Controllable Soft-Templating Approach to Mesoporous Silicates” Chemical Reviews, 2007, 107, 7.
[51]B. Lindman and H. Wennerström. ,“Micelles : Amphiphile Aggregation in Aqueous Solution” Springer-Verlag, Heidelberg, 1980,87,1-83.
[52]J. N. Israelachvili, S. Marcelja, R. G. Horn. ,“Physical principles of membrane organization” Q. Rev. Biophys, 1980, 13, 121.
[53]D. J. Mithchell, B. W. Ninham. ,“Micelles, vesicles and microemulsionsq” J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
[54]D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky. ,“Topologicalconstruction of mesoporousmaterials” J. Am. Chem. Soc., 1998, 120, 6024.
[55]B. D. Cullity. ,” Elements of X-Ray Diffraction” Addison-Wesley, New York, 2nd ed. ,1994.
[56]W. Liu, K. Kowal and G. C. Farrington. ,“Electrochemical Characteristics of Spinel Phase LiMn2O4-Based Cathode Materials Prepared by the Pechini Process. Influence of Firing Temperature and Dopants” Journal of the Electrochemical Society, 1996, 143, 3590-3596.
[57]S.B. Tang, M.O. Lai, L. Lu. ,“Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques” J. Power Sources, 2008, 111, 149–153.
[58]K. Tang, X. Yu, J. Sun, H. Li, X. Huang. ,“Kinetic Analysis on LiFePO4 Thin Films by CV, GITT, and EIS” Electrochimica Acta, 2011,56, 4869-4875.
[59]J. Molenda, A. Stoklosa, and T. Bak. ,“Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties” Solid State Ionics, 1989 ,36, 53.
[60]H.J. Yuea, X.K. Huanga, D.P. Lva, Y. Yanga. ,“Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability” Electrochimica Acta, 2009,54,5363–5367.
[61]M. Saitoh, M. Sano, M. Fujita, M. Sakata, M. Takata, E. Nishiboric. ,“Studies of capacity losses in cycles and storages for a Li1.1Mn1.9O4 positive electrode” J Electrochem. Soc. , 2004, 151(1) , A17-A22.
[62]J.S. Gnanaraj, V.G. Pol, A. Gedanken, D. Aurbach. ,“Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method” Electrochemistry Communications, 2003,5,940–945.
[63]Q. C. Zhuang, T. Wei, L.L. Du, Y.L. Cui, L. Fang, S. G. Sun. ,“An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4” J. Phys Chem. C ,2010,114 ,8614-8621.



電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top