跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊士平
研究生(外文):Shih-Ping Chuang
論文名稱:冷樑送風系統氣流分佈模擬與氣流率(DR%)之分析研究
論文名稱(外文):A Study on Air Distribution Simulation and Draught Rate (DR%) Analysis for Chilled Beam Air Supply Systems
指導教授:蔡尤溪蔡尤溪引用關係
口試委員:江旭政李宗興
口試日期:2012-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:冷樑冷卻樑板氣流率氣流分佈模擬誘導風比
外文關鍵詞:chilled beamchilled ceilingDraught Rateair distribution simulationInduction Ratio
相關次數:
  • 被引用被引用:1
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對冷樑送風系統之氣流分佈模擬,分析其溫度、速度場以及DR%(氣流率)。此外冷樑(chilled beam)常見的問題,例如盤管結露問題,在地處高溫高濕的台灣言,冷樑送風系統在設計時需透過適當的外氣量控制與濕度控制來防止室內盤管結露。本文以實際案例透過eQuest軟體的熱負荷估算可準確評估送水溫度與送水流量,且使用上班前預冷運轉策略來置換室內高溫高濕的空氣,可避免上班後的冰水送水入冷卻盤管時所造成結露。
透過CFD軟體依不同誘導風比(IR5、4、3)、冷樑設置間距不同(3.6m、3.8m、4.0m、4.2m),共設計出7種case來分析其不同參數配置對於氣流分佈的影響,本研究可看出在不同誘導風比(IR)下的溫度場差異不明顯,可能是侷限在假設條件之送風量差異不大所產生的結果。而每個case的共通點,水平面高0.1m相較1.1m風速較快且溫度較低,且平均速度方面水平面高0.1m相較1.1m高出約30~60%。另外在冷樑不同安裝間距,可發現在大於4.0m以上間距的氣流、溫度分佈較均勻;溫度分佈均勻相對的舒適度也會提升。
並且以ISO7730熱舒適之DR%(氣流率)指標來評估分析因風吹造成對人體之不舒適百分比,可作為設計者與施工人員參考的依據。冷樑出風口方向採對吹方式相較平行擺放有較低的DR%,而風速越高對DR%影響是成正比的,另外7種case在水平面高0.1m的DR%相較1.1m高出約47~93%,而且可以看出溫度場與速度場的分佈是受發熱源所影響的。綜述以上論點在平均風速以及DR%幾乎都大於ISO7730所建議的數值,可能是因為室內熱負荷約為80m2/W大於建議值的70m2/W。


This study is about the air distribution simulation of chilled beam systems. The temperature and velocity field were analyzed so to determine the draught rate (DR%) for the application of chilled beam air-conditioning. The common problems of the chilled beam system such as coil condensation were addressed as Taiwan is located in high temperature and humidity region. Therefore the chilled beam design requires appropriate consideration of outdoor air volume and humidity control so to prevent coil condensation. Pre-cooling before work hours is can be solution for the above problems. An actual case was analyzed with eQuest for cooling, then an accurate assessment of supply water temperature and flow rate can be calculated so to avoid the condensation.
Different induction ratio (5, 4 and 3) and chilled beam spacing (3.6m, 3.8m, 4.0m and 4.2m) were investigated for the impact on the air distribution. The results show that different induction ratio has no obvious influence on the temperature distribution, and could be due to small difference in total air volume. The common point for all the cases is that the air velocity is higher and the temperature is lower at 0.1m height level than at 1.1m height level. The mean air velocity is at 0.1m is higher than 1.1m for about 30 ~ 60%. In addition for chilled beam spacing above 4.0m the airflow and temperature distribution is more even. Then higher comfort would be achieved.
In ISO 7730 standard a thermal comfort indicator DR% is the discomfort level expressed as the percentage of people predicted to be unsatisfied. This value can be used in the design and construction of air-conditioning systems. For the air supply of chilled beam counter direction is better than parallel flow as it would result in lower DR%. The DR% is proportional to the mean air velocity that affects persons in a room. For the seven cases studied DR% at 0.1m level is higher than 1.1m level for about 47 ~ 93%. It can also be seen that the temperature and velocity fields are affected by the heat source. In summary for the cases studied the mean air velocity and DR% are mostly higher than the recommended value of the ISO7730 standard. The probable cause could be the cooling load is about 80m2 /W, greater than the nominal value of 70m2 /W.


摘 要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2文獻回顧與探討 2
1.3研究動機與目的 4
1.4研究流程圖 5
第二章 冷樑系統簡介 6
2.1冷樑工作原理 6
2.2冷樑型式 6
2.2.1主動式冷樑(Active chilled beam) 6
2.2.2被動式冷樑(Passive chilled beam) 8
2.2.3冷樑之冷卻能量計算 9
2.3冷樑之優缺點 9
2.3.1冷樑送風系統之防冷凝控制策略 11
第三章 冷樑系統控制策略與模擬案例 13
3.1模擬目的 13
3.2冷樑系統之系統控制策略 14
3.3 eQuest商業大樓能耗模擬 16
3.3.1 eQuest軟體簡介 16
3.3.2 eQuest模擬流程圖 17
3.3.3商業大樓之簡介 18
3.3.4商業大樓之eQuest參數簡介 19
3.3.5大樓能耗模擬 26
第四章 冷樑氣流分佈之模擬分析 28
4.1計算流體力學軟體簡介 28
4.2數值理論 29
4.2.1統御方程式 29
4.2.2離散化方法 31
4.2.3對流-擴散關係處理 31
4.2.4壓力-速度耦合關係的處理 33
4.3計算流體力學之模擬步驟 36
4.4冷樑模型建立 36
4.5冷樑之誘導風比(IR)設定 38
4.6冷樑與辦公室模型建立 39
4.7冷樑設置不同間距與辦公室模型建立 42
4.8邊界條件設定 44
第五章 氣流率(DR%)之熱舒適分析 46
第六章 結果與討論 49
6.1冷樑不同誘導風比(IR)下之流場分佈情形 49
6.2冷樑不同間距之流場分佈情形 58
6.3冷樑不同誘導風比(IR)下之熱舒適分析 63
6.4冷樑不同間距之熱舒適分析 66
6.5冷樑不同誘導風比與不同間距之熱舒適分析 69
6.6小結 75
第七章 結論與建議 76
7.1結論 75
7.2建議 77
參考文獻 78
符號彙編 80


[1]李志鵬,「冷樑與全外氣空調箱系統整合之節能效益與熱舒適度應用研究」,台灣冷凍空調學會ERAC,台中,勤益科技大學,2012,ERAC203,第1-11頁。
[2]K. Roth, J. Dieckmann, R. Zogg and J. Brodrick, “Chilled Beam Cooling”, ASHRAE Journal, 2007, pp. 84-86.
[3]HVR, “Chilled beams cooling”, Heating and Ventilating Review, 2010, pp. 4.
[4]K. J. Loudermilk and D. S. Alexander, “Efficient Space Humidity Control with Active Chilled Beam Systems”, ASHRAE Journal, 2012, pp. 28-39.
[5]P. Rumsey, N. Bulger, J. Wenisch, T. Disney and R. Engineers, “Chilled Beams In Laboratories”, U. S. A., U.S. Department of Energy, 2009, pp. 1-15.
[6]S. Weidner, J. Doerger, M. Walsh, “Cooling with Less Air”, ASHRAE Journal, 2009, pp. 84-86.
[7]M. Koskela, H. Haggblom, R. Kosonen and M. Ruponen, “Air distribution in office environment with asymmetric workstation layout using chilled beams”, Building and Environment, vol.45, 2010, pp.1923-1931.
[8]Z. Viktor, B. Lyuben, Y. Boryana, M. Arsen and K. Risto, “Air flow distribution in rooms with chilled beams”, Halton Technical articles, 2006.
[9]A. Melikov, B. Yordanova, L. Bozkhov, V. Zboril and R. Kosonen, “Human response to thermal environment in rooms with chilled beams”, Proceedings of Clima WellBeing Indoors, Helsinki, Finland 2007.
[10]A. Melikov, B. Yordanova, L. Bozkhov, V. Zboril1, and R. Kosonen, “Impact of the airflow interaction on occupants'' thermal comfort in rooms with active chilled beams”, Proceedings of Clima WellBeing Indoors, Helsinki, Finland 2007.
[11]R. Kosonen, P. Saarinen, H. Koskela and A. Hole, “Impact of heat load location and strength on air flow pattern with a passive chilled beam system”, Energy and Buildings, vol.42, 2010, pp. 32-42.
[12]R. Kosonen and F. Tan, “A feasibility study of a ventilated beam system in the hot and humid climate a case-study approach”, Building and Environment, vol.40, 2005, pp.1164-1173.
[13]林嘉育,獨立室外氣空調系統(DOAS)運用於商辦大樓之評價研究,碩士論文,國立臺北科技大學能源與冷凍空調工程系,台北,2011。
[14]王苡婷,輻射冷房系統建置與性能初探,碩士論文,國立台灣科技大學建築研究所,台北,1998。
[15]Halton, “Chilled Beam Design Guide”, Finland, Halton, 2007, pp. 1-46.
[16]T. Hyman, “laboratories design”, R&D Magazine, Vol. 14, No. 8, 2009, pp.1-23.
[17]彭柏翰,多功能大型空間空調外氣需量控制策略,國立臺北科技大學能源與冷凍空調工程系,台北,2010。
[18]莊詠斌,中國信託商業銀行新總行大樓建築模擬專案計畫,國立臺北科技大學能源與冷凍空調工程系,台北,2011。
[19]陳彥昌,創新資料中心高性能密閉式機櫃之研究,國立臺北科技大學能源與冷凍空調工程系,台北,2010。
[20]林金童,大空間建築之空調通風效能與耗能研究,博士論文,國立臺北科技大學能源與冷凍空調工程系,台北,2010。
[21]Trox, “Chilled Beam Design Guide”, Germany, Trox, 2009, pp. 1-68.
[22]ISO standard 9920, Ergonomics of the thermal environment - Estimation of thermal insulation and water vapour resistance of a clothing ensemble, International Organization for Standardization, 2007, pp. 90.
[23]ISO standard 7730, Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, International Organization for Standardization, 2005, pp. 4-17.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top