跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游凱欣
研究生(外文):Kai-Hsin Yu
論文名稱:噴霧型儲冰技術之液滴過冷結晶實驗研究與分析
論文名稱(外文):An Experimental Study on the Crystallization of Supercooled Water Spray Droplets for Cold Storage Application
指導教授:蔡尤溪蔡尤溪引用關係
口試委員:江旭政李宗興
口試日期:2012-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:儲冰液滴噴霧結晶
外文關鍵詞:Ice Storagewater dropletssprayice crystallization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區目前尚在運轉的儲冰系統,以全凍結式居多,顯然有其存在的原因,綜觀其主要的成功因素為穩定性高,系統足稱堪用,但不可諱言的,它存在著釋冰緩慢的缺點,容易造成不完全溶冰的問題,儲冰槽內若存有千年冰是一種浪費。
上述針對儲冰式空調的發展過程,以及現況的敘述做為本研究的背景說明,本研究將以創新的理念來發展一種新型儲冰空調技術,擬採空冷方式將液滴與空氣直接接觸做熱交換,使液滴於空氣中快速形成冰晶,並將冰晶做儲存,本技術開發的基本概念為善用液滴的微小粒徑(100μm~500μm),在空中飄行期間,形成極大的液體表面積(As),以及液滴飄行的速度(U),有利於熱傳係數的提高,並且包含數值模型計算,於不同參數中之熱傳係數與質傳係數關係比較之。在這種環境下可使每粒液滴在瞬間(1.5sec~3sec),即快速的凍結,它可以連續性的產出冰晶,並遠離結晶區,不會有靜態製冰因冰層加厚,致使熱傳效率遞減的問題。
根據實驗結果可得在3秒內獲得(100μm~500μm)結晶粒子,不同的參數變化,藉由實驗得知不同大小之粒徑利用理論模型驗證出其不同粒徑、不同熱傳面積導致不同之熱傳量,可得知粒徑越小熱傳係數較高,熱傳量亦較高,可利用此種實驗結果,運用於噴霧結晶上,選用較小粒徑之噴頭,可獲得最佳結晶效果。


Presently most air-conditioning ice storage systems are of total freeze type due to its stable operation and simplicity. However there are problems in this system such that slow discharge and much un-melting ice in the storage tanks. Therefore a new concept of direct contact heat transfer of water droplets in cold air environment is studied experimentally. The objective is to achieve quick freezing and crystallization for ice storage. An experiment was setup for spraying water mist of diameters 100μm~500μm so that the large surface area of airborne droplets would allow rapid heat mass transfer.
In the research different models of heat mass transfer were applied for comparison of heat mass transfer coefficients. It was found in the experiments that the droplets freeze quickly (1.5 ~ 3 seconds) into crystals without the problems of thicker ice and reduction of heat mass transfer effects. Crystals in the range of 100μm~500μm was obtained in less than 3 seconds. Different parameters were used in the analysis for the size distribution of the water droplets. The results of higher heat transfer coefficients for smaller diameters agreed well with the theoretical models. The results of this research can be used in spray crystallization.


摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2文獻回顧與探討 2
1.2.1實務/應用層面 2
1.2.2液滴熱傳特性層面 5
1.3研究動機與目的 7
1.4實驗規劃研究流程圖 9
第二章 儲冰空調原理應用與介紹 10
2.1儲冰空調簡介 10
2.1.1儲冰的意義 11
2.1.2分量儲冰之用途與原理 12
2.1.3全量儲冰之用途與原理 13
2.2儲冰的空調種類 13
2.2.1外融冰式系統 14
2.2.2內融冰式系統 15
2.2.3製冰滑落式系統 16
2.2.4優態鹽儲冰系統 17
2.2.5冰晶式系統 18
2.2.6容器式系統 19
2.2.7儲冰式水系統 19
2.3電價結構分析之觀念 20
2.4儲冰之控制策略及設計方式 22
2.4.1逐時的空調負載計算 23
2.4.2考量初設的經濟性 23
2.4.3選擇儲冰設備 23
2.4.4選擇儲冰空調系統運轉模式 24
2.4.5選擇與儲冰設備相關之設備 24
2.4.6計算儲冰空調系統容量 24
2.4.7確認各設備與計算之結果 25
2.4.8儲冰空調系統各主要設備的規格決定 25
第三章 二相型氣液噴霧實驗設備與研究方法 26
3.1實驗目的 26
3.2實驗系統與設備 26
3.2.1實驗系統 26
3.2.2實驗箱體 28
3.2.3量測方法 28
3.2.4實驗儀器 30
3.2.5儀器校正 33
3.2.6實驗流程 33
3.3實驗參數 34
3.3.1相對溼度與室內溫度條件 34
3.3.2顆粒粒徑大小 34
3.3.3液滴風向風速流線 35
第四章 儲冰系統實驗設備與研究 36
4.1實驗目的 36
4.2實驗設計與研究方法 37
4.3實驗裝置設計 38
4.4實驗量測與規劃 43
4.5實驗流程 45
4.6量測儀器明細表 47
第五章 結果與討論 48
5.1二相型氣液噴霧實驗結果 48
5.1.1粒徑大小差異參數分析 51
5.1.2不同相對溼度分析 59
5.1.3不同液滴速度分析 65
5.1.4紐賽數數值探討 74
5.2儲冰槽實驗結果 77
5.2.1不同液滴大小參數分析 82
第六章 結論與未來展望 85
參考文獻 87
符號說明 90


[1]Y. Teraoka, A. Satio and S. Okawa, “Study on anisotropy of growth rate of ice crystal in supercooled water”, International Journal of Refrigeration, vol. 27, 2004, 242-247.
[2]D. A. Miller, E.E. Adams and R.L. Brown, “A microstructural approach to
predict dry snow metamorphism in generalized thermal conditions”, Cold Regions Science and Technology, vol. 37, 2003, pp. 213-226.
[3]L. Levi and O. B. Nasello, “A discussion of mechanisms proposed to explain
habit changes of vapor-grown ice crystals”, Atmospheric Research, ,vol. 66, 2003, pp. 107-122.
[4]C. H. Cheng and C.C. Shiu, “Frost formation and frost crystal growth on a cold plate in atmospheric air flow”, International Journal of Heat and Mass Transfer, vol. 45, 2002, pp. 4289-4303.
[5]M. Strub, O. Jabbour, F. Strub, J.P. Bedecarrats, “Experimental study and modeling of the crystallization of a water droplet”, International Journal of Refrigeration, vol. 26, 2003, pp. 59-68.
[6]S. Thongwik, N. Vorayos, T. Kiatsiriroat, A. Nuntaphan, “Thermal analysis of slurry ice production system using direct contact heat transfer of carbon dioxide and water mixture”, Heat and Mass Transfer, vol. 35,2008, pp. 756-761.
[7]C. Chaichana , William W.S Charters , Lu Aye . “An ice thermal storagecomputer model” , Applied Thermal Engineering, vol. 21, 2001, pp. 1769-1778.
[8]I.S. Choi, J.D. Kim, E. Kim, J.I. Yoon. ”Experimental characteristics of a storage tank harvest-type ice storage system”. International Journal of Heat and Mass
Transfer, vol. 45, 2002, pp. 1407-1412.
[9]M.Strub, O.Jabbour, F.Strub, J.P. Be ́de ́carrats. “Experimental study and modeling of the crystallization of a water droplet”. International Journal of Refrigeration,vol. 26, 2003, pp. 59-68.
[10]K. Kikuchi, H. Uyeda. “Formation mechanisms of multibranched snow crystals”. Atmospheric Research, vol. 47-48, 1998, pp. 169-179.
[11]C. H. Cheng and C. C. Shiu, “Frost formation and frost crystal growth on a cold plate in an atmospheric air flow”. International Journal of Heat and Mass Transfer, vol. 45, 2002, pp. 4289-4303.
[12]J.D. Zhao, N. Liu, Y.M. Kang, “Optimization of ice making period for ice-storage system with flake ice maker”. Energy and Buildings, vol. 40, 2008, pp. 1623-1627.
[13]A. Acrivos and J. D. Goddard, “Asymptotic Expansions for Laminar Convection Heat and Mass Transfer”, J. Fluid. Mech, vol. 23, 1965, pp. 273-291.
[14]V. G. Levich, Physicochemical Hydrodynamics, New Jersey, Englewood Cliffs: Prentice-Hall, 1962.
[15]Z. G. Feng and E. E. Michaelides, “Mass and Heat Transfer from Fluid Spheres at Low Reynolds Numbers”, Powder Technology, vol. 112, 2000, pp. 63-69.
[16]Z. G. Feng and E. E. Michaelides, “Heat and Mass transfer coefficients of viscous spheres”, Internal Journal of Heat and Mass Transfer, vol. 44, 2001, pp. 4445-4454.
[17]W. E. Ranz and W. R. Marshall, “Evaporation From Drops”, Chemical Engineering Progress, vol. 48, 1952, pp. 141-146.
[18]R. Clift, J. R. Grace and M. E. Weber, Bubbles, Drops and Particles, New York: Academic Press, 1978.
[19]J. F. Harper and D. W. Moore, “The Motion of a Spherical Liquid Drop at High Reynolds Number.” J. Fluid Mech, vol. 32, 1968, pp. 367-391.
[20]Z. G. Feng and E. E. Michaelides, “A Numerical Study on the Transient Heat Transfer from a Sphere at High Reynolds and Peclet Numbers”, Int. J. Heat and Mass Transfer, vol. 43, 2000, pp. 219-229.
[21]H. M. Blackburn, “Mass and momentum transport from a sphere in steady and oscillatory flows”, phys. Fluids, vol. 14, 2002, pp. 3997-4011.
[22]B. Abramzon and W. A. Sirignano, “Droplet Vaporization for Spray Combustion Calculations”, Int. J. Heat Mass Transf, vol. 32, 1989, pp. 1605-1618.
[23]C. H. Chiang, M. S. Raju and W. A. Sirignano, “Numerical analysis of a convecting, vaporizing fuel droplet with variable properties”, Int. J. Heat Mass Transf, vol. 35, 1992, pp. 1307-1327.
[24]M. W. Renksizbulut and M. C. Yuen, “Experimental study of droplet evaporation in high temperature air stream”, J. Heat Transfer, vol. 105, 1983, pp. 364-388.
[25]S. Whitaker, “Forced Convection Heat Transfer Correlations for Flow in Pipes Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tubes Bundles”, A.I.Ch.E. Journal, vol. 18, 1972, pp. 361-367.
[26]嚴志偉,變流量節能技術應用於儲冰空調系統之研究,碩士論文,國立台
北科技大學冷凍空調工程系碩士班,台北,2002。
[27]楊百經,直立管束內融冰式儲冰槽儲冷特性之模擬,碩士論文,國立台北
科技大學冷凍空調工程系碩士班,台北,2001。
[28]彭建彰,真空冷凍式儲冰技術研究,碩士論文,長庚大學機械工程研究所,
桃園,2000。
[29]簡銘賢,空調除冰系統節能運轉模式與電腦控制程式之研究,碩士論文,
國立臺北科技大學冷凍空調工程系碩士班,台北,2003。
[30]蔡尤溪、李宗興,儲冰空調系統技術,台北:全華圖書股份有限公司,2008。
[31]蕭培坤,車輛電動空調變冷媒流量控制與耗能因子研究,碩士論文,國立臺北科技大學冷凍空調工程系碩士班,台北,2011。
[32]翁慶岳,儲冰系統控制策略,碩士論文,國立臺北科技大學冷凍空調工程系碩士班,台北,2001。
[33]Rawlings, L.K., ”Ice storage system optimization and control strategies”, ASHRAE Transactions, Vol.94, No.1b.pp12-23,1985.
[34]MacCracken, C. D., “Control of bring-type ice storage systems”, ASHRAE Transactions, Vol.94,No.1,pp32-43,1985.
[35]Drees, K.H. and Braun,J.E., ”Development and evaluation of a rule-based control strategy for ice storage systems”, ASHRAE, HVAC&R Research, Vol.3,No.2,pp128-148,1997.
[36]Henze,G.P.,Dodier,R.H., and Moncef Krarti,”A simulation environment for the analysis of ice storage controls”, ASHRAE,HVAC&R Research, Vol.3,No.2,pp.128-148,1997.
[37]ASHRAE handbook,”Applications”, chapter33,2011.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top