跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖紹宇
研究生(外文):Shao-Yu Liao
論文名稱:多噴嘴微流道晶片散熱器之噴嘴孔徑組合研究
論文名稱(外文):A Study of Jet Diameter Combination of Micro Channel Impingement with Multiple Jets for Chip Cooling
指導教授:簡良翰簡良翰引用關係
口試委員:施陽正孫明宗
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:125
中文關鍵詞:噴擊冷卻微流道單相熱傳兩相熱傳流場可視化
外文關鍵詞:Jet coolingMicro ChannelsSingle Phase Heat TransferTwo Phase Heat TransferFlow Visualization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
考量現今電子運算晶片發熱量日益增高,故需要發展出一理想化之散熱系統,故本研究針對整合噴擊與微流道之混合性散熱機制,設計出噴嘴與微流道一體成型之散熱結構。於投影面積12×12mm2的散熱器中,建立流道高0.8mm,寬0.6mm,流道長度為12mm,共計11條微流道之加熱表面,每條微流道設置3個噴擊孔,孔徑為中心最大之孔徑0.54mm與兩側靠近微流道出口較小0.3mm之漸縮式孔徑排列組合,工作流體為FC-72,入口飽和溫度為25℃及50℃,並設定噴擊流量為100~710ml/min。進行實驗分析。結果發現,單相熱傳時熱傳性能皆會隨著噴擊流量增大而呈現線性上升之趨勢,由於本研究為漸縮式噴擊孔排列組合方式,有助於熱傳進入兩相沸騰熱傳,而當流量增至一定範圍以上時,流道內流速過快導致對流熱傳效應較沸騰兩相熱傳更為顯著。本研究另外於5-0.4-1.5加熱表面上裝設可視化石英加工玻璃,以拍攝微流道內兩相氣泡生成情形,發現在低流量(100ml/min)狀態下,加熱瓦數為2W時,即發現流道中已有微小的氣泡產生,推測本研究表面在不同流量測試下,可能皆提早進入兩相沸騰熱傳,並隨著加熱量的增加,使得流道中出現柱狀氣泡團的現象。為了有效驗證實驗與模擬本研究加熱表面之單相熱傳性能與壓損,故建立三排微流道與噴擊孔之幾何模型,結果顯示,熱傳性能實驗值會比模擬值還高,推測於實驗條件下,流道內可能已進入兩相熱傳,造成熱傳性能較佳的趨勢。此外,由於本研究所模擬散熱器模型僅三個流道,而實際散熱器有11個流道,導致流體流經於噴孔上方分配區時,造成流量分配不均的情形,並形成額外之分配區壓損,故模擬之壓損值較小。經由迴歸及疊代計算,可歸納出單相熱傳經驗式,其誤差範圍為±16%以內。

As chip power heat in electronic equipment has been increasing, an effective cooling system is required for computer chips. In this study, a heat sink integrating micro-channels with multiple jets was designed for chip cooling. This study used dielectric fluid FC-72 as working fluid. The cooling fluid was introduced to a 12×12mm2 heated surface, which had 11 micro-channels, each channel was 0.8 mm high, 0.6 mm wide, and 12 mm in length. There were 3 nozzles installed on each micro-channel. The nozzle diameters combination were decreasing from center of each channel to two sides of channel’s outlets, and the diameters varied from 0.54mm to 0.3mm. In the tests, the saturation temperature of cooling device system was set at 25 and 30℃, and the volume flow rate varied from 100 to 710 ml/min.
The experimental results showed that heat transfer performance increased with increasing flow rate for single phase heat transfer, and in two phase heat transfer regime, due to this study is explored decreasing nozzle diameters combination, which caused flow velocity too fast in channels with higher flow rates, so, the effects of convection heat transfer was much more than the effects of the boiling heat transfer. Additionally, in order to capture two phase flow behavior along the channels, the 5-0.4-1.5 test module was replaced a minimized quartz glasses for flow visualization. It showed a combination bubbly flow phenomenon in channel with low volume flow rate(100ml/min) while the heat wattage was 2 watts. Hence, we speculated that test in different volume flow rates on test module, the all heat transfer type perhaps early turn to two-phase boiling heat transfer, even with increasing heat caused further bubble coalescence into longer columnar bubbles in channel. Besides, a unit cell of the hybrid configuration that was used in the single phase computational simulation for validating the heat transfer performance and pressure drop with experimental results. The unit cell consists of three of the eleven micro-channels and nozzles with surrounding solid. The results showed that heat transfer performance in experiments was higher than in simulation, which was predicted that heat transfer type perhaps early turn to two phase boiling heat transfer in channels under experimental condition. And due to simulation geometry simply 3 channels differed to practical test module with 11 channels, while the working fluid into the top of nozzle’s separating zone, which was caused the volume flow rate in uneven distribution so that produce an eatra pressure drop in separating zone, that’s why pressure drop smaller in simulation. Correlation of heat transfer coefficient of the single-phase heat transfer of the micro-channel/jet cooling integrated device has been developed. Compared with the single phase data, the prediction uncertainties is within ±16%.


目錄

摘要……………………………………………………………………………………i
Abstract........................................................................................................................iii
誌謝……………………………………………………………………………………v
目錄…………………………………………………………………………………...vi
表目錄…………………………………………………………………………..……..x
圖目錄………………………………………………………………………...………xi
第一章 緒論…………………………………………………………………………1
1.1 研究背景……………………………………………………………...…….1
1.2 研究目的………………………………………………………………...….3
第二章 文獻回顧……………………………………………………………...…….4
2.1 噴擊熱傳…………………………………………………………………….4
2.1.1 單相噴擊熱傳………………………………………………………..4
2.1.2 雙相噴擊熱傳………………………………………………………..7
2.1.3 噴擊型式………………………………………………………..…..12
2.1.4 噴擊孔型式之影響……………………………………………...….14
2.1.5 結構表面對噴擊熱傳之影響………………………………………18
2.1.6 噴擊高度對熱傳性能之影響……………………...……………….22
2.2 微渠道熱傳……………………………………………………………...…23
2.2.1 微渠道入出口配置之影響…………………………………………24
2.2.2 微渠道底部結構表面之影響………………………………………26
2.2.3 堆疊型式微流道熱傳………………………………………………27
2.3 結合噴擊孔與微流道之散熱機制………………………………………...30
2.4 過冷度對熱傳性能之影響……………………………………………...…36
2.5 不凝結氣體之影響分析……………………………………………..…….37
2.6 臨界熱通量分析…………………………………………………...………38
2.7 流道可視化…………………………………………………...……………38
第三章 實驗設備與方法…………………………………………………………..39
3.1 實驗機制………………………………………...…………………………39
3.2 實驗參數範圍設定……………………………………………………...…42
3.2.1 工作流體之飽和溫度………………………………………………42
3.2.2 熱通量參數設定……………………………………………………42
3.2.3測試表面…………………………………………………………….44
3.2.4 噴擊孔徑與間距……………………………………………………46
3.2.5 噴擊流量設定………………………………………………………48
3.3 實驗系統…………………………………………………………...………49
3.3.1 工作流體循環系統…………………………………………………49
3.3.2 模擬晶片發熱系統…………………………………………………49
3.3.3 儲液與過濾系統……………………………………………………50
3.3.4 冷凝循環系統………………………………………………………51
3.3.5 充填與儲氣系統……………………………………………………51
3.3.6 影像擷取系統………………………………………………………51
3.4 實驗量測儀器……………………………………………………………...52
3.4.1 壓力轉換計…………………………………………...…………….52
3.4.2 浮球式流量計………………………………………………………52
3.4.3 微齒輪泵……………………………………………………………52
3.4.4 差壓計………………………………………………………………53
3.4.5 熱電偶………………………………………………………………53
3.4.6 變壓器………………………………………………………………53
3.4.7 資料擷取器…………………………………………………………53
3.4.8 真空泵………………………………………………….…….……..54
3.4.9 影像擷取設備………………………………………………………54
3.5 實驗步驟…………………………………………………...………………54
3.6 實驗數據與誤差分析………………………………………………...……58
3.6.1 實驗數據分析………………………………………………………58
3.7 誤差分析……………………………………………………………...……59
3.7.1 溫度校正……………………………………………………………59
3.7.2 流量校正……………………………………………………………61
3.7.3 實驗誤差分析………………………………………………………64
第四章 數值模擬方法……………………………………………………………..67
4.1 基本假設……………………...……………………………………………67
4.2 統禦方程式………………………………………………………………...67
4.3 研究方法…………………………………………………………………...69
4.4 模擬軟體解析……………………………………………………….……..70
4.5 物理模型及邊界條件………………………………………………...……71
4.5.1 物理模型建立………………………………………………………71
4.5.2 模型邊界條件設立…………………………………………………72
4.6 數值模擬結果……………………………………………………………...72
4.6.1 漸縮式噴擊孔排列對熱傳性能之影響……………………………72
4.6.2 噴擊孔徑大小對熱傳性能之影響…………………………………76
第五章 結果與討論………………………………………………………………..81
5.1 整合噴擊與微渠道之散熱機制…………………………………………...81
5.2 整合型散熱機制之熱傳…………………………………………………...82
5.2.1 漸縮式噴擊孔排列組合對熱傳性能之影響………………………82
5.2.2 微流道流場可視化…………………………………………………88
5.3 噴擊流量對熱傳性能與壓降之影響………………………………….…..95
5.4 熱阻抗分析………………………………………………………………..98
5.5 與文獻比較討論…………………………………………………………..99
5.6 模擬與實驗驗證………………………………………………………….101
5.6.1 不同飽和溫度下對於單相熱傳之影響…………………………..101
5.6.2 不同飽和溫度下對於壓損之影響……………………………..…105
5.7 整合型散熱結構之熱傳經驗式………………………………………….109
5.7.1 單相熱傳……………………………………………...…………...109
第六章 結論與未來展望…………………………………………………...…….112
6.1 結論……………………………………………………………………….112
6.2 未來展望………………………………………………………………….114
參考文獻……………………………………………………………………………115
附錄…………………………………………………………...…………………….122
A.1 本實驗3-0.3~0.54-3表面………………………………………………..122
符號說明………………………………………………………………...………….123

表目錄

表 2.1 噴擊熱傳之相關文獻參數………………………………………….………10
表 2.2 續-噴擊熱傳之相關文獻參數………………………………………………11
表 2.3 Whelan and Robinson [15]七種噴嘴之幾何形狀…………………...………15
表 2.4 Hsieh and Yao [21]之針狀表面與光滑表面參數表………………...………19
表 2.5 Escher et al. [33,34]交錯堆疊型結構鰭片之幾何尺寸……………………..28
表 2.6 結合噴擊與渠道散熱機制之相關文獻參數……………………………….35
表 3.1 非導電液體(FC-72)之物性表………………………………………………43
表 3.2 測試表面之幾何參數……………………………………………………….45
表 3.3 浮球式流量計校正當天之平均揮發量與平均揮發速率………………….62
表 3.4 實驗設備之精準度………………………………………………………….64
表 3.5 3-0.3~0.54-3之誤差範圍……………………………………………….….66
表 4.1 十種加熱表面於入口飽和溫度30℃,定流量450ml/min,定加熱量20W
之數值模擬結果 …………………………………………………………..80
表 5.1 整合型散熱機制之量測參數……………………………………………….82
表 5.2 本研究模擬與實驗於單相熱傳之熱傳性能比較結果…………………...107
表 5.3 本研究模擬與實驗於單相熱傳之壓損值比較結果…………………...…108

圖目錄

圖 1.1不同的氣體及液體冷卻機制示意圖 [1]…………………………..…………2
圖2.1 Silk et al.[3]之不同衝擊角度…………………………………………….…….5
圖2.2 Womac et al. [5]噴擊孔徑之配置圖………………………………………...…5
圖2.3 Moreno et al. [6]之不同排列型式噴嘴效率分析……………………………..6
圖2.4 Omar et al.[10]之沸騰熱傳曲線……………………………………….………8
圖2.5Horacek et al. [12]之噴擊高度示意圖…………………………………….……9
圖2.6 Robinson and Schnitzler [14]噴淋型式示意圖(a)自由噴淋;(b)潛浸噴淋….12
圖2.7Robinson and Schnitzler [14]自由噴淋與潛浸噴淋在不同H/dn下之熱傳性能
…………………………………………………………………...…………….13
圖2.8 Robinson and Schnitzler [14]熱對流係數對應泵浦消耗功率之關係圖…….14
圖2.9 Royne and Dey[16]之噴嘴幾何形狀……………………………………...….16
圖2.10 Lin and Ponnappan [17]之旋轉型式噴嘴………………………………...…16
圖2.11 Amon et al. [18]之不同幾何形狀之噴嘴………………………...…………17
圖2.12 Meyer et al.[19]之不同型式噴嘴……………………………………...…….17
圖2.13 Silk et al.[3]之不同增強表面………………………………………………..18
圖2.14 Hsieh and Yao [21]不同尺寸之針狀表面…………………………………...19
圖2.15 Hsieh and Yao [22]之實驗結果(a)不同加熱表面之熱傳性能曲線;(b)不同熱傳
機制示意圖…………………………………………………………...……20
圖2.16 Das et al.[24]之沸騰熱傳增強表面………………………………….……....21
圖2.17 Chrysler et al[26]改變噴擊間距對於表面溫度之影響………………….….23
圖2.18 Amon et al.[18]之噴擊冷卻流場觀察…………………………………….…23
圖2.19 Lu and Wang [29]之不同微流道入出口擺設位置………………………….25
圖2.20 Kandlikar and Grande [31]之不同型式結構表面: (a)不等高圓柱;(b)山紋型條
紋………………………………………………………………….…..……..26
圖2.21 Escher et al. [33,34]之交錯堆疊型結構鰭片…………………………..……..27
圖2.22 Wei et al. [37]之多層堆疊型微熱交換器………………………………..……29
圖2.23 Wei et al. [37]之微熱交換器逆向流流場示意圖………………………..……30
圖2.24 Sung and Mudawar [38]不同噴擊速度之流場……………………………..…30
圖2.25 Sung and Mudawar [42]之隙縫型噴嘴………………………………………..32
圖2.26 Sung and Mudawar [44]之不同噴擊孔排列方式(a)漸縮;(b)等徑;(c)漸擴.33
圖2.27流道內氣體空隙率示意圖(a)單一流道型式;(b)結合噴擊與渠道型式.33
圖2.28 Lin and Ponnappan [50]不凝結氣體對熱傳性能之影響……………………..37
圖3.1 整合型散熱機制之實驗系統示意圖…………………………………………..40
圖3.2整合式模組實驗系統實際架設圖……………………………………………...41
圖3.3測試結構表面前視圖…………………………………………...………………44
圖3.4測試結構表面側視圖………………………………………………….………..45
圖3.5測試表面實體圖………………………………………………………………...45
圖3.6電子顯微鏡所拍攝之微渠道出口實際幾何形狀及尺寸[mm]………………..46
圖3.7本研究0.3 mm之噴淋孔實際加工尺寸……………………….………………48
圖3.8本研究0.54 mm之噴淋孔實際加工尺寸…………………….………………..48
圖3.9加熱模組示意圖……………………………………………………………...…50
圖3.10電子顯微鏡拍攝實體圖……………………………………………………….54
圖3.11實驗標準作業流程圖………………………………………………………….57
圖3.12溫度校正系統示意圖………………………………………………………….60
圖3.13 thermocouple溫度校正誤差曲線……………………………………………..61
圖3.14浮球式流量計流量校正誤差曲線圖………………………………………….63
圖4.1本研究整合3排噴擊孔與微流道之模型示意圖……………………………...71
圖4.2本研究3-0.4-3加熱表面之微流道中心切面速度[m/s]分佈圖………………..73
圖4.3本研究3-0.3~0.54-3加熱表面之微流道中心切面速度[m/s]分佈圖……….…74
圖4.4本研究3-0.4-3加熱表面之底壁熱傳係數[W/m2K]分佈圖……………….…..74
圖4.5本研究3-0.3~0.54-3加熱表面之底壁熱傳係數[W/m2K]分佈圖………….….75
圖4.6本研究3-0.4-3加熱表面之左壁熱傳係數[W/m2K]分佈圖…………….……..75
圖4.7本研究3-0.3~0.54-3加熱表面之左壁熱傳係數[W/m2K]分佈圖……….….…76
圖4.8本研究3-0.16~0.48-3加熱表面之底壁熱傳係數[W/m2K]分佈圖……….…...77
圖4.9本研究3-0.16~0.48-3加熱表面之微流道中心切面壓損[Pa]分佈圖…….…...77
圖4.10本研究3-0.4-3加熱表面之微流道中心切面壓損[Pa]分佈圖…………….…78
圖5.1本實驗3-0.3~0.54-3表面之熱傳性能………………………………………....83
圖5.2本研究3-0.3~0.54-3表面之噴灑狀態………………………………………....87
圖5.3本實驗微型石英可視化玻璃之高度……………………………………….…..88
圖5.4本實驗微型石英可視化玻璃之厚度…………………………………………...88
圖5.5加熱表面5-0.4-1.5與可視化玻璃之等角視圖…………………………….…..89
圖5.6加熱表面5-0.4-1.5與可視化玻璃之前視圖…………………………………..89
圖5.7 5-0.4-1.5加熱表面於飽和溫度25℃,低流量100ml/min,加熱瓦數2W之
微流道可視化示意圖………………………………………...………………92
圖5.8 5-0.4-1.5加熱表面於飽和溫度25℃,中流量450ml/min,加熱瓦數25W之
微流道可視化示意圖…………………………………………………...……93
圖5.9 5-0.4-1.5加熱表面於飽和溫度25℃,大流量710ml/min,加熱瓦數60W之
微流道可視化示意圖………………………………………………...………94
圖5.10雷諾數對熱傳性能之影響…………………………………………….………96
圖5.11本實驗3-0.3~0.54-3表面之壓降………………….………………………….97
圖5.12本實驗3-0.3~0.54-3表面之熱阻抗…………………………………………..98
圖5.13本實驗3-0.3~0.54-3表面與文獻之熱傳性能比較………………………….100
圖5.14本研究3-0.3~0.54-3表面於飽和溫度為25℃,流量為100ml/min之微流道
底壁熱傳係數[W/m2K]分佈圖……………………………….…………….102
圖5.15本研究3-0.3~0.54-3表面於飽和溫度為50℃,流量為100ml/min之微流道
底壁熱傳係數[W/m2K]分佈圖……………………………………….…….102
圖5.16本研究3-0.3~0.54-3表面於飽和溫度為25℃,流量為100ml/min之微流道
左壁熱傳係數[W/m2K]分佈圖……………………………………………..103
圖5.17本研究3-0.3~0.54-3表面於飽和溫度為50℃,流量為100ml/min之微流道
左壁熱傳係數[W/m2K]分佈圖……………………………………………..103
圖5.18本研究飽和溫度為25℃,流量為100ml/min微流道中心切面之壓損[Pa]分
佈圖…………………………………………………………………….……106
圖5.19本研究飽和溫度為50℃,流量為100ml/min微流道中心切面之壓損[Pa]分
佈圖………………………………………………………………………….106
圖5.20本實驗3-0.3~0.54-3表面之單相熱傳性能……………………………….…110
圖5.21預測單相熱傳之紐賽數誤差百分比…………………………………………111


[1]ASHRAE Handbook-Applications, “Data Processing and Electronic Office Areas”, Ch17, 2007.
[2]B.Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, 2006, “Spray angle effect during spray cooling of microelectronics: Experimental measurements and comparison with inverse calculations,” Applide Thermal Engineering, Vol. 26, pp. 1788-1795.
[3]E.A. Silk, J. Kim, and K. Kiger, 2006, “Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 4910-4920.
[4]L. M. Jiji and Z. Dagan, "Experimental Investigation of Single-Phase Multi-Jet Impinement Cooling of an Array of Microelectronic Heat Sources," in Cooling Technology for Electronic Eguipment, Ed W. Aung, Hemisphere Publishing Corp, New York, 1987, pp.333-351.
[5]D. J.Womac, F. P. Incropera, and S. Ramadhyani, "Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets," Journal of Heat Transfer, vol. 116, 1994, pp. 482-486.
[6]G. Jr. Moreno, S.M. You, and E. Steinthorsson, 2007, “Spray cooling performance of single and multi-jet spray nozzles using subcooled FC-72,” 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 ,Vol. 1, pp. 783-790.
[7]Fabbri Matteo and K. Dhir Vijay, "Optimized heat transfer for high power electronic cooling using arrays of microjets," Journal of Heat Transfer, vol. 127, 2005, pp. 760-769.
[8]Copeland David, "Single-Phase and Boiling Cooling of Small Pin Fin Arrays by Multiple Nozzle Jet Impingement," Journal of Electronic Packaging, 1996, vol. 118, pp. 21-26.
[9]D. H. Wolf, F. P. Incropera and R. Viskanta, "Local jet impingement boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 39, Issue 7, 1996, pp. 1395-1406.
[10]Ahmed M.T. Omar*, M. S. Hamed and M. Shoukri, "Nucleate Boiling Heat Transfer under Liquid Jet Impingement," Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8-12, 2007.
[11]A.G. Pautsch and T.A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72," International Journal of Heat and Mass Transfer, vol. 48, Issue 15, 2005, pp. 3167-3175.
[12]B. Horacek, J. Kim, and K. T. Kiger, 2004, “Spray cooling using multiple nozzles: Visualization and wall heat transfer measurements,” IEEE Transactions on Device and Materials Reliability, Vol. 4, pp. 614-625.
[13]Kurt A. Estes and Issam Mudawar, "Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays," Journal of Electronic Packaging, 1995, vol. 117 pp. 323-332.
[14]A.J. Robinson, and E. Schnitzler, 2007, “An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer,” Experimental Thermal and Fluid Science, Vol. 32, pp. 1-13.
[15]B.P. Whelan, and A.J. Robinson, 2007, “The effect of nozzle geometry on pressure drop and heat transfer to free surface liquid jet arrays,” 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 ,Vol. 2, pp. 747-756.
[16]A. Royne and C.J. Dey, Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays, International Journal of Heat and Mass Transfer, vol. 49, 2006, pp. 800–804.
[17]Lanchao Lin, Rengasamy Ponnappan, "Heat transfer characteristics of spary cooling in a closed loop," International Journal of Heat and Mass Transfer, vol. 46, 2003, pp. 3737-3746.
[18]Cristina H. Amon, S.C. Yao, C.F. Wu, C.C. Hsieh, "Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics, " Proceedings of ASME-JSME Thermal Engineering Summer Heat Transfer Conference , vol. 127, 2005.
[19]Michael T. Meyer, Issam Mudawar, Chad. E. Boyack and Charles A. Hale, "Single-phase and two-phase cooling with an array of rectangular jets," International Journal of Heat and Mass Transfer, Vol. 49, Issues 1-2, 2006, pp. 17-29.
[20]I. Mudawar, and D.C. Wadsworth, "Critical heat flux from a simulated chip to a confined rectangular impinging jet of dielectric liquid, "International Journal of Heat and Mass Transfer, Vol. 34, Issue 6, 1991, pp. 1465-1479
[21]C.C. Hsieh, and S.C. Yao, 2006, “Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 962-974.
[22]吳東旅、簡良翰,「鰭片表面應用於滴淋蒸發式電子散熱系統之研究」,碩士論文,國立臺北科技大學能源系,台北,2008。
[23]張秦耀、簡良翰,「非導電流體之兩相噴擊冷卻實驗研究」,碩士論文,國立臺北科技大學能源系,台北,2009。
[24]A. K. Das, P. K. Das, P. Saha, "Performance of different structured surfaces in nucleate pool boiling," Applied Thermal Engineering, Vol 29, Issues 17-18, December 2009, Pages 3643-3653.
[25]李書哲、簡良翰,「非導電性流體之噴擊式與池沸騰式晶片冷卻研究」,博士論文,國立臺北科技大學能源系,台北,2010。
[26]Gregory M. Chrysler, Richard C. Chu, and Robert E. Simons, "Jet Impingement Boiling of a Dielectric Coolant in Narrow Gaps," IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, no. 3, 1995. pp. 527-533.
[27]N. Jeffers, J. Punch, and E. Walsh, "An Experimental Characterisation of Miniature Scale Cold Plates for Electronics Cooling Applications," 2007 Proceedings of HT2007ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Canada, July 8-12, 2007.
[28]Osamu Tonomura, Shotaro Tanaka, Masaru Noda, Manabu Kano, Shinij Hasebe, Iori Hashimoto, "CFD-based optimal design of manifold in plate-fin microdevices," Journal of Chemical Engineering, vol. 101, 2004, pp. 397-402.
[29]M.C. Lu, and C.C. Wang, "Effect of the Intel Location in the Performance of Parallel-Channel Cold-Plate, "IEEE Transactions on Components and Packaging Technology, vol. 29, No. 1, 2006, pp. 30-38.
[30]David Copeland, "Single-Phase and Boiling Cooling of Small Pin Fin Arrays by Multiple Slot Nozzle Suction and Impingement, "IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 18, No. 3, 1995.
[31]S.G. Kandlikar, and W.J. Grande, "Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology," Heat Transfer Engineering, Vol. 25, No. 8, 2004, pp. 5-16.
[32]葉竣達、楊建裕,「液體微熱交換器之熱傳增強研究」,博士論文,國立中央大學機械工程學系,2008。
[33]W. Escher, B. Michel, and D. Poulikakos, "A novel high performance, ultra thin heat sink for electronics," International Journal of Heat and Fluid Flow, Vol. 31, 2010, pp. 586-598.
[34]W. Escher, B. Michel, and D. Poulikakos, "Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips." 2010 Proceedings of ASME-JSME Thermal Engineering Summer Heat Transfer Conference, vol. 132, 2010.
[35]J.H. Ryu, D.H. Choi, and S.J. Kim, "Three-dimensional numerical optimization of a manifold microchannel heat sink, " International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 1553-1562
[36]X.J. Wei, Y. Joshi, "Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components, " Journal of Electronic Packaging, Vol.126,2004,pp.60-66.
[37]X.J. Wei, Y. Joshi, and M.K. Patterson, "Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices, " Journal of Heat Transfer, vol. 129, 2007, pp. 1432-1444.
[38]Myung Ki Sung, and Issam Mudawar, "Single-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module," International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 3882-3895.
[39]S.G. Kandlikar, and H.R. Upadhye, "Extending the Heat Flux Limit with Enhanced Microchannels in Direct Single Phase Cooling of Computer Chips," Proceedings of 21st IEEE SEMI-THERM Symposium, San Jose, 2005, pp. 8-15.
[40]J. Barrau, Daniel Chemisana, Joan Rosell, Lounes Tadrist, M. Ibanez, "An experimental study of a new hybrid jet impingement/micro-channel cooling scheme," Applied Thermal Engineering, vol. 30, 2010, pp. 2058-2066.
[41]Myung Ki Sung and Issam Mudawar, "Single-phase and two-phase cooling using hybrid micro-channel/slot-jet module," International Journal of Heat and Mass Transfer, vol. 51, Issues 15-16, 2008, pp. 3825-3839.
[42]Myung Ki Sung and Issam Mudawar, "Correlation of critical heat flux in hybrid jet impingement/micro-channel cooling scheme," International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 2663-2672.
[43]Myung Ki Sung and Issam Mudawar, "CHF determination for high-heat flux phase change cooling system incorporating both micro-channel flow and jet impingement, "International Journal of Heat and Mass Transfer, vol. 52, Issues 3-4, 2009, pp. 610-619.
[44]Myung Ki Sung, Issam Mudawar, "Effects of jet pattern on two-phase performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme, "International Journal of Heat and Mass Transfer, Vol. 52, Issues 13-14, 2009, pp. 3364-3372.
[45]Dorin Lelea, "Effects of inlet geometry on heat transfer and fluid flow of tangential micro-heat sink," International Journal of Heat and Mass Transfer, Vol.53, 2010, pp. 3562-3569.
[46]劉瀚陽、簡良翰,「整合噴擊之微渠道散熱器於晶片冷卻之研究」,碩士論文,國立臺北科技大學能源系,台北,2011。
[47]Murray E. Johns and Issam Mudawar, " An Ultra-High Power Two-Phase Jet-Impingement Avionic Clamshell Module, " Journal of Electronic Packaging, Vol. 118, 1996, pp. 264-270.
[48]J.R. Rybicki, and I. Mudawar, 2005, “Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 5-16.
[49]I. Mudawar, and K.A. Estes, 1996, ”Optimizing and predicting CHF in spray cooling of a square surface,” Journal of Heat Transfer, Vol. 118, pp. 672-679.
[50]L. Lin, and R. Ponnappan, 2003, “Heat transfer characteristics of spray cooling in a closed loop,” International Journal of Heat Transfer, Vol.46, pp. 3737-3746.
[51]A. G. Pautsch and T.A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72," International Journal of Heat Transfer, vol.48, 2005, pp. 3167-3175.
[52]W. M. Healy, P. J. Halvorson, J. G. Hartley, S. I. Abdel-Khalik, "A critical heat flux correlation for droplet impact cooling at low Weber numbers and various ambient pressures,” International Journal of Heat and Mass Transfer, Volume 41, Issues 6-7, March-April 1998, Pages 975-978.5
[53]Ting-Yu Lin, Chien-Yuh Yang, "An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 4736-4742.
[54]B. Horacek, J. Kim, and K. T. Kiger, "Spray cooling using multiple nozzles: Visualization and wall heat transfer measurements," IEEE Transactions on Device and Materials Reliability, vol. 4, 2004, pp. 614-625.
[55]K. H. Ho, S. T. Newman, S. Rahimifard, and R. D. Allen, "State of the art in wire electrical discharge machining (WEDM)," International Journal of Machine Tools and Manufacture, vol. 44, 2004, pp. 1247-1259.
[56]J. P. Holman, " Experimental methods for engineers 6 th Edition, "McGraw-Hill, Inc, 1994.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top