跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉政昇
研究生(外文):Cheng-Sheng Liu
論文名稱:冷媒R-22與R-410A在U型平滑與微鰭片管內之冷凝熱傳研究
論文名稱(外文):Condensation heat transfer of R-22 and R-410A in U-bend smooth and microfin tubes
指導教授:簡良翰簡良翰引用關係
口試委員:洪國書楊安石
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:冷凝熱傳微鰭片管U型彎管R-22R-410A
外文關鍵詞:Condensation heat transferU-bendMicrofin tubeR-410AR-22
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在探討純冷媒應用在U型平滑與內螺紋鰭片管之冷凝熱傳性能。工作流體為R-22與R-410A,測試區U型彎管位在垂直平面上,上下直管部份為水平,冷媒由上往下流,管外冷卻水與冷媒呈逆向流。測試飽和溫度為30℃與40℃,質量通量50~200 kg/ m2s,入口乾度範圍0.2~0.9,測試區入出口乾度差固定為0.2。管內冷凝熱傳係數由管壁外量測之壁溫計算,共量測七個軸向位置,每個位置量測三點。
實驗結果顯示,冷凝熱傳係數隨著乾度與質量通量增加而上升。R-22在平滑管與內螺紋鰭片管之冷凝熱傳係數皆大於R-410A。使用內螺紋鰭片管可有效提升熱傳效率;相較於平滑管,R-22之冷凝熱傳係數提升63%~120%、R-410A則可提升50%~97%之熱傳效率。在U型管彎管區之熱傳係數平均比上直管提升21%(平滑管)與12%(內螺紋鰭片管),而整個U型管熱傳係數最佳位置為彎曲段中點(90o)位置。本研究修改文獻水平直管經驗式,修正後之經驗式與實驗數據均方根誤差為9.68%(平滑管)與5.49%(內螺紋鰭片管)。另外,本研究以直管熱傳性能為基準而提出彎管熱傳經驗公式;此經驗公式與實驗數據均方根誤差為9.16%(平滑管)與5.8%(內螺紋鰭片管)。


This study investigates the condensation heat transfer experiments for two pure refrigerants, R-410A and R-22, in the U-bend smooth and micro-fin tubes. U-bend situated in a vertical plane, including two straight and a bend section. Refrigerants flow from the upper horizontal straight section to the lower horizontal straight section. Experiments were performed at saturation temperatures of 30℃ and 40℃. The mass flux varied from 50 to 200 kg/m2s, and the inlet quality varied from 0.2 to 0.9. The heat transfer rate of the test section was controlled to a decrease of vapor quality of 0.2 in the present experiment.
The test results showed that heat transfer coefficient increased as mass flux and quality increased. Condensation heat transfer coefficient of R-22 was higher than R-410A in both the smooth and microfin tubes. The average condensation heat transfer coefficient of the microfin tubes for R-22 and R-410A were 1.63-2.2 and 1.5-1.97 times larger than those of the smooth tube, respectively. In average, the local heat transfer coefficients of R-22 and R-410A in the bend section were, 1.21 and 1.12 times larger than those in the upper straight section, respectively. The maximum local heat transfer coefficient occurs at the midle (90° position) of the bend. Heat transfer correlations of straight horizontal condensation on smooth and microfin tubes predict the data in this study with r.m.s. 9.68% and 5.49% respectively. A correlation of local heat transfer coefficient of the U-bend section based on the straight tube is provided. It predicts the present data of smooth and finned tubes with r.m.s. 9.16% and 5.8%.


第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與動機 2
第二章 文獻回顧 4
2.1水平直管管內冷凝熱傳 4
2.1.1水平直管流譜圖 4
2.1.2兩相流譜計算 5
2.2彎管管內冷凝熱傳 11
2.3管內冷凝經驗公式 15
第三章 實驗設備與方法 25
3.1 實驗系統 25
3.1.1 實驗測試區 26
3.1.2 過冷裝置 27
3.1.3 儲液系統 27
3.1.4 加熱裝置 27
3.1.5 抽真空與高壓空氣及工作流體填充 28
3.2 實驗參數設定 28
3.3 測試區實驗參數 29
3.4 測試管表面參數 30
3.5 量測儀器 31
3.5.1 壓力傳送器 31
3.5.2 壓差計 31
3.5.3 流量計 32
3.5.4 微齒輪泵 32
3.5.5 熱電偶 32
3.5.6 電源供應器 32
3.5.7 電力分析儀 33
3.5.8 真空泵 33
3.5.9 熱澆道加熱器 33
3.6 實驗步驟 34
3.7 實驗數據分析 36
3.7.1 加熱器加熱量計算 36
3.7.2 測試管冷媒入口乾度計算 37
3.7.3 熱傳係數計算 37
3.8 誤差分析 38
3.8.1 溫度校正 38
3.8.2 熱傳係數誤差分析 39
第四章 結果與討論 41
4.1 平均冷凝熱傳係數分析 41
4.1.1 平滑管平均熱傳係數 41
4.1.2 內螺紋鰭片管平均熱傳係數 43
4.1.3 R-22與R-410A比較 45
4.1.4 流譜分析 47
4.1.5 平滑管與內螺紋鰭片管比較 50
4.1.6 不同飽和溫度比較 51
4.1.7 文獻比較 52
4.2 彎管冷凝熱傳分析 57
4.2.1 U型管熱傳變化 57
4.2.2內螺紋鰭片與平滑彎管比較 59
4.2.3下直管熱傳受彎管影響之距離 59
4.3 經驗公式之比較 60
4.3.1 平滑直管 60
4.3.2 內螺紋鰭片直管 64
4.3.2 彎管 67
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 70
參考文獻 71
符號說明 74


[1]Van P. Carey,”Liquid-Vapor phase-change phenomena,University of California at Berkeley”, pp 399-480,1992.
[2]徐千曄、簡良翰,“雙壓並聯蒸發冷凝式冰水主機之性能測試及模擬“,國立臺北科技大學碩士學位論文,台北,2011
[3]Taitel,Y.,and Dukler,A.E.,”A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow”,AIChE J.,vol.22,pp.47-55,1976.
[4]Dongsoo Jung, Youngmok Cho, Kiho Park ,2004“Flow condensation heat transfer coefficients of R22, R134a,R407C, and R410A inside plain and microfin tubes” International Journal of Refrigeration 27 ,pp 25–32.
[5]Schlager, L.M., Pate, M.B., Bergles, A.E., “Heat transfer and pressure drop during evaporation and condensation of R22 in horizontal micro-fin tubes.,” Int. J. Refrig., Vol.12, pp.6-14 January,1989.
[6]Man-Hoe Kim, Joeng-Seob Shin,” Condensation heat transfer of R22 and R410A in horizontal smooth and microfin tubes”, International Journal of Refrigeration 28 ,pp 949–957,2005
[7]M-H. Kim, J-S. Shin, “Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes, Int J Refrigeration “28 ,pp 940–948,2005
[8]Han, D., Lee, K.J., “Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes.,” Int. J. Heat Mass Transfer, 48, 2005, pp.3804-3816.
[9]S. Oh, A. Bergles, “Visualization of the effects of spiral angle on the enhancement of in-tube flow boiling in microfin tubes”, ASHRAE Trans. 108 (Part 2) (2002) 509–515.
[10]A. Cavallini, G. Censi, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, “Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube”, Int. J. Refrig. 24 (2001) 73–87.
[11]P.G. Kosky, F.W. Staub, “Local condensing heat transfer coefficients in the annular flow regime”, AIChE J. 17 ,1971.
[12]H. Jaster, P.G. Kosky, “Condensation heat transfer in a mixed flow regime”, Int. J. Heat Mass Transfer 19 ,pp95–99,1976
[13]Mao-Yu Wen, Ching-Yen Ho, ”Condensation heat-transfer and pressure drop characteristics of refrigerant” R-290/R-600a–oil mixtures in serpentine small-diameter U-tubes, Applied Thermal Engineering 29 ,pp 2460–2467, 2009
[14]B. Ouazia* and C. Marvillet,” Forced convective heat transfer of refrigerant 22 evaporating in upward and downward flow in U-bends” Int. J. Refrig. Volume 17 Number 4,1994
[15]Keumnam Cho , Sang-Jin Tae,” Condensation heat transfer for R-22 and R-407C refrigerant-oil mixtures in a microfin tube with a U-bend” International Journal of Heat and Mass Transfer 44 pp2043-2051,2001
[16]Haitao Hu,GuoliangDing*, WenjianWei,XiangchaoHuang,ZhenceWang,” Heat transfer characteristics of refrigerant-oil mixtures flow boiling in a horizontal C-shape curved smooth tube”, international journal of refrigeration 33 ,pp 932 – 943,2010
[17]O. García-Valladares,”Review of In-Tube Condensation Heat Transfer Correlations for Smooth and Microfin Tubes”, Heat Transfer Engineering ,24:4, 6-24,2003
[18]Shah, M. M., “A General Correlation For Heat Transfer During Film Condensation Inside, International Journal of Heat and Mass Transfer”, vol. 22, pp. 547–556, 1979.
[19]Tang, L., Ohadi, M. M., and Johnson A. T., “FlowCondensation in Smooth and Microfin Tubes with HCFC-22, HFC-134a, and HFC-410 Refrigerants. Part II: Design Equations, Journal of Enhanced Heat Transfer”, vol. 7, pp. 311–325, 2000.
[20]Bivens, D. B., and Yokozeki, A., “Heat Transfer Coefficient and Transport Properties for Alternative Refrigerants”, Proc. 1994 Int. Refrigeration Conference, Purdue, Indiana, pp. 299–304,1994.
[21]Tandon, T. N., Varma, H. K., and Gupta, C. P., “Heat Transfer During Forced Convection Condensation Inside Horizontal Tube”, International Journal of Refrigeration, vol. 18, no. 3, pp. 210–214, 1995.
[22]Dobson, M. K., Chato, J. C., Wattelet, J. P., and Gaibel, J. A., “HeatTransfer and FlowRegimes During Condensation in Horizontal Tubes”, ACRC Technical Report 57, University of Illinois at Urbana-Champaign, 1994.
[23]Fujii, T., “Enhancement to Condensing Heat Transfer—New Developments, Journal of Enhanced Heat Transfer”, vol. 2, pp. 127–137, 1995.
[24]Wang, H.S., Honda, H., “Modified theoretical models of film condensation in horizontal microfin tubes.,” Int. J. Heat Mass Transfer., 45, pp.1513–1523,2002
[25]Yu, J., and Koyama, S., “Condensation Heat Transfer of Pure Refrigerants in Microfin Tubes”, Proc. 1998 Int. Refrigeration Conf, Purdue, Indiana, pp. 325–330, 1998.
[26]Cavallini, A., Del Col, D., Doretti, L., Longo, G. A., and Rossetto, L., “Heat Transfer and Pressure Drop During Condensation of Refrigerants Inside Horizontal Enhanced Tubes”, International Journal of Refrigeration, vol. 23, pp. 4–25, 2000.
[27]Kedzierski, M. A., and Goncalves, J. M., “Horizontal Convective Condensation of Alternative Refrigerants Within a Microfin Tube”, Journal of Enhanced Heat Transfer, vol. 6, pp. 161–178, 1999.
[28]Kaushik, N., and Azer, N. Z., “A General Heat Transfer Correlation for Condensation Inside Internally Finned Tubes”,ASHRAE Transactions, vol. 94, no. 2, pp. 261–279, 1988.
[29]Haraguchi, H., Koyama, S., and Fujii, T., “Condensation of Refrigerants HCFC22, HFC134a, and HCFC123 in a Horizontal Smooth Tube (2nd Report, Proposal of Empirical Expressions for Local Heat Transfer Coefficient)”, Transactions JSME,vol. 60, no. 574, pp. 245–252, 1994. In Japanese.
[30]E.W. Lemmon, M.L. Huber, M.O. McLinden, ‘Reference Fluid Thermodynamic and Transport Properties’, NIST Standard Reference Database 23, Version 8.0, 2007.
[31]Holman, J. P.,” Experimental methods for engineers, McGraw-Hill”, Inc. 1994.
[32]Gregorig R., ”Film condensation on finely rippled surfaces with consideration of surface tension”,Zeitschrift fur Angewandate Mathematik und Physik, Vol. V ,pp36-39,1954


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top