跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李俊儀
研究生(外文):Jyun-Yi Lee
論文名稱:使用數值分析探討半導體廠房製程排氣汙染物排放情形
論文名稱(外文):Numerical Investigation of Dispersion of Pollutant Plumes from Process Exhaust Systems in a Semiconductor Fabrication Plant
指導教授:胡石政
口試委員:蔡俊宏施陽正
口試日期:2012-06-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:計算流體力學外氣空調箱排氣煙囪汙染物排放
外文關鍵詞:Computational Fluid DynamicsMake-up Air UnitExhaustion ChimneyPollution Exhaust.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來半導體工業的產品元件線寬已進入奈米等級要求,產品必須仰賴高精密的設計與製造。而製程排氣大多經由屋頂的排氣煙囪排至戶外,然而對潔淨室相當重要的外氣空調箱吸入口,也位於接近屋頂處,容易形成煙囪排出的廢氣經由外氣空調箱吸入口,再引入潔淨室內產生二次汙染。本研究利用計算流體力學套裝軟體進行相關分析,針對此廠之各種不同的條件下,來預測外氣空調箱吸入口汙染物分佈的情形,並對汙染物擴散結果來加以做分析討論。結果顯示,在八種不同風向下的外氣空調箱吸入濃度,以西風的平均濃度為最高,北風的平均濃度為最低。當外氣空調箱吸入口與風向平行,所吸入的汙染物濃度會較小,而吸入口在背風面時汙染物濃度會較高。大氣風速較高之區域,可降低汙染物對其外氣空調箱吸入口的影響與減少對周邊區域的影響,而增加煙囪高度可以有效的減少汙染物進入外氣空調箱吸入口,高度越高汙染物吸入越少。建議新建廠區依此模式建立起合理的製程排氣煙囪高度。

As the semiconductor technology has shrunk the half-pitch (hp) node into nanometer scales, more attention has been directed toward the yield-affecting influences from the air quality of manufacturing environment. Re-entrainment of potential pollutants into the supply air, which released from the process exhaust system, through the make-up air unit can cause the secondary pollution in the semiconductor fab. In this study, the computational fluid dynamics (CFD) software-FLUENT was applied to investigate the impacts of varying atmospheric wind speeds and directions on the dispersion of pollutant plumes from process exhaust systems in a semiconductor fabrication plant, and the subsequent impacts on the potential of re-entrainment of pollutants into the supply air for semiconductor fab through the make-up air unit. Based on the numerical investigations with eight varying prevailing wind directions, the results showed that the west wind and north wind contribute to the highest and lowest averaged concentration of pollutants at the inlet of make-up air unit, respectively. Besides, it is found that the concentration of re-entrained pollutants into the make-up air unit is relatively lower when the inlet of make-up air unit is setup in parallel to the wind direction. However, the concentration of re-entrained pollutants into the make-up air unit is found relatively higher when the inlet of make-up air unit is installed on the leeward side. The results also demonstrated that the higher atmospheric wind speed helps reducing the dispersion of pollutant plumes to the adjacent regions and the concentration of pollutants at the inlet of make-up air unit. Meanwhile, increasing the height of process exhaust chimney can effectively minimize both the concentration and potential of re-entrainment of pollutants through the make-up air unit. This numerical investigation serves as good references for establishing the reasonable height of process exhaust chimneys for the construction of new fab buildings in adjacent areas to the existing semiconductor fabrication plant.

摘要..................................................i
ABSTRACT..............................................ii
誌謝..................................................iv
目錄..................................................v
表目錄................................................vii
圖目錄................................................viii
第一章 緒論........................................1
1.1 前言........................................1
1.2 潔淨室之規範與汙染源.............................1
1.3 潔淨室之規範.....................................2
1.4 潔淨室之汙染源...................................4
1.5 氣態分子汙染之影響...............................6
1.6 文獻回顧.........................................7
1.7 研究目的.........................................8
第二章 理論與數值模式..................................10
2.1 基本假設........................................10
2.2 統御方程式......................................10
2.2.1 流場統御方程式..................................11
2.2.2 紊流模式........................................12
2.3 數值方法........................................13
2.3.1 離散化方法......................................13
2.3.2 演算法..........................................15
2.3.3 收斂條件........................................18
第三章 數值模擬........................................19
3.1 幾何圖形與邊界條件..............................19
3.1.1 半導體廠外型....................................19
3.1.2 邊界條件........................................23
3.2 離散化方法與鬆弛因子............................30
第四章 結果與討論......................................31
4.1 不同風向之濃度比較..............................31
4.2 不同大氣風速對汙染物擴散的比較..................49
4.3 不同煙囪高度對汙染物擴散的比較..................57
第五章 結論........................................... 65
參考文獻.................................................66
符號彙編.................................................68



[1]W. C. Hinds, “Aerosol technology,” Second Edition, 1999.
[2]“Procedural standards for certified testing of cleanrooms,” NEBB Second Edition, 1996.
[3]“Cleanrooms and associated controlled environments,” ISO14644-1 First Edition, 1999.
[4]Forecast of airborne molecular contamination limits for the 0.25 micron high performance logic process technology, 1995, Transfer # 95052812A-TR SEMATECH.
[5]ASHRAE STANDARD 62.1-2004, "Ventilation for Acceptable Indoor Air Quality".
[6]ACGIH (American Conference of Governmental Industrial Hygienists
[7]Canepa, E., “An overview about the study of downwash effects on dispersion of airborne pollutions," Environmental Modeling & Software, Vol. 19, pp. 1077-1087, 2004.
[8]Chang, C. H. and Meroney, R. N., “Numerical and physical modeling of bluff body flow and dispersion in urban street canyons," Journal of wind and Engineer and Industrial Aerodynamics, Vol.89, pp. 1325-1334, 2001.
[9]Ahmadi, G, Li A., “ Computer simulation of particle transport and deposition near a small isolated building," Journal of Wind Engineer and Industrial Aerodynamics, 84 (2000), pp. 23-46.
[10]W. P. Jones and B. E. Launder, “The prediction of laminarization with a two-equation model of turbulence,” Int. J. Heat Mass Transfer, Vol. 15, 1972, pp. 301-314.
[11]J. O. Hinze, Turbulence, McGraw-Hill Publishing Co, New York, 1975.
[12]S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer, Vol. 15, 1972, pp. 1787-1806.
[13]S. V. Patanker, “A calculation procedure for two-dimensional elliptic situations,” Numer. Heat Transfer, Vol. 4, 1981, pp. 409-425.
[14]張厚起、苗志銘、余斯慰,「不同高度建築物配置型態對街谷汙染物擴散影響之研究」,中國機械工程學會第二十四屆全國學術研討會論文集,論文編號:E14-0001
[15]林席園,「製程排氣煙囪與外氣空調箱吸入口汙染物氣流模擬」,碩士論文,國立台北科技大學能源與冷凍空調空工程研究所,台北,2010。
[16]鄭百晟,「氣冷式冰水機組流場模擬分析」,碩士論文,國立台北科技大學能源與冷凍空調空工程研究所,台北,2011。
[17]莊月璇,「台灣地區風速機率分佈之研究」,碩士論文,國立中央大學土木工程研究所,桃園,2001。
[18]張景松、黃政賢,「環境工程概論」,高立圖書有限公司,台北,2004。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top