跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林晉生
研究生(外文):Jin-Sheng Lin
論文名稱:數值模擬探討幾何參數對Savonius風力機氣動力性能的影響
論文名稱(外文):Numerical Study of the Effect of Geometric Parameters on Dynamic Performance of a Savonius Wind Rotor
指導教授:黃博全黃博全引用關係
指導教授(外文):Po-Chuan Huang
口試委員:黃仁智林顯群
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:Savonius風力機計算流體力學氣動力特性幾何參數
外文關鍵詞:Savonius wind rotorComputational fluid dynamicsAerodynamic performance analysisGeometric Parameters
相關次數:
  • 被引用被引用:2
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
由於能源危機、氣候變遷、世界油價的不穩定,綠色能源中的風能再一次受到重視。其中Savonius風力機擁有噪音小、構造簡單、成本低、不受風向影響等優點,預期阻力型風力機未來將會穩定快速成長,並逐漸扮演著重要的能源角色。
本研究利用計算流體力學之數值方法模擬分析阻力型風力機之氣動力特性,再藉由改變幾何設計參數,包括重疊比、分離間距、葉片數、葉片形狀等,探討其對風力機氣動力的影響,進而提出效能較高的阻力型風力機的造型。
研究結果顯示:(1)隨著尖端速度比的增加,轉子中心處的迴流變大、變強,但葉片尖端的渦流則是變小、變弱,而造成氣動力性能下降;(2)阻力型風力機葉片間的重疊間隙,可以平衡葉片凹面的低壓,同時也縮小迴流的區域,而提升風力機的氣動力性能;(3)減少分離間距可以提升分離點的壓力,但平衡葉片凹面低壓的能力卻變弱,故改變分離間距對風力機的氣動力性能沒有幫助;(4)3葉片的阻力型風力機之扭力變化的幅度較平緩; (5)採用重疊比為0.15、Bach type的葉片形狀之阻力型風力機,在尖端速度比為1.25時有最大的輸出功率係數0.3186。

Wind energy have once again sparked the discussion of the use of green energy because of energy shortage and climate anomalies and recent price increases on the petroleum. Savonius wind turbine has the advantages of low noise, simple structure, low cost and didn’t influence by wind direction, etc. Forecasting the drag type wind turbine will gradually become the mainstream in wind power generation.
In this work, a numerical study has been carried out for analyzing the aerodynamic performance of drag type wind turbine. The study discussed about variation of aerodynamic performance of drag type wind turbine by the variation of different governing parameters, including the overlap ratio, the separation gap, the number of buckets, and the cross-section profile. Based on the above parametric analysis, this paper provides the best profile for Savonius wind turbine.
The results show that (1) as the tip speed ratio increases, the recirculating flow located at rotor center becomes larger and stronger, but the vortex near the blade tip becomes more weaken and small, which leads to the reduce in aerodynamic performance of Savonius wind turbine; (2) the overlaps of the rotor can balance the low pressure appearing on concave of blades, which will decrease recirculating region and increase aerodynamic efficiency; (3) as the separation gap decreases, the low pressure located at separation point becomes larger. This results in the lessening in ability of balancing the low pressure at concave of blades, which cannot promote aerodynamic performance; (4) the torque change in Savonius wind rotor with three blades is less than that with two blades; (5) the Savonius wind rotor with Bach-type blades and 0.15 overlap radio will have maximum power coefficient under the condition of tsr=1.25.

摘 要 I
ABSTRACT II
致謝 IV
目 錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 阻力型風力機之實驗相關文獻 2
1.2.2 阻力型風力機之數值模擬相關文獻 5
1.2.3 改善性能的研究文獻 7
1.3 研究目的 10
第二章 風力機基本理論 12
2.1 風能轉換系統 12
2.2 可以利用的風能 15
2.3 風力機的流速計算 16
2.4 Betz極限 17
2.5 Savonius風力機作動的原理 19
2.6 Savonius風力機的性能參數 20
2.7 阻力型風力機的幾何參數及座標系統 22
第三章 數值方法 24
3.1 基本統御方程式 24
3.2 紊流與紊流模式 25
3.2.1 紊流 25
3.2.2 紊流模式 29
3.3 數值方法 30
3.3.1 對流-擴散方程式的差分型式 31
3.3.2 壓力-速度耦合關係的處理 33
3.4 數值邊界條件 37
第四章 結果與討論 38
4.1 阻力型風力機氣動力特性之分析 38
4.1.1 阻力型風力機模型與網格建立及邊界條件設定 38
4.1.2 格點獨立 41
4.1.3 時間獨立 42
4.1.4 數值穩定性 43
4.1.5 數值模式的驗證 44
4.1.6 阻力型風力機扭力性能與葉片表面壓力分布及流場分析 45
4.1.7 尖端速度比對阻力型風力機扭力性能與流場的影響 50
4.1.8 阻力型風力機Ct、Cp分析 55
4.2 幾何參數對風力機氣動力討論 56
4.2.1 重疊比對阻力型風力機性能的影響 57
4.2.2 分離間距對阻力型風力機性能的影響 67
4.2.3 葉片數對阻力型風力機性能的影響 77
4.2.4 Bach type葉片形狀對阻力型風力機性能的影響 81
第五章 結論與建議 87
5.1 結論 87
5.2 建議 88
參考文獻 89
符號彙編 91

[1]賀德馨, 風工程與工業空氣動力學, pp. 77-79, 2006.
[2]S. J. Savonius, Mechanical Engineering, Vol. 53, pp. 333, 1931.
[3]B. F. Blackwell, R. E. Sheldahl, L. V. Feltz, Wind tunnel performance data for two- and three-bucket Savonius rotors, Journal of Energy, Vol. 2, 1987.
[4]N. Fujisawa, and F. Gotoh, Visualization study of the flow in and around a Savonius rotor, Experiments in Fluids, Vol. 12, pp. 407-412, 1992.
[5]M. Nakajima, S. Iio, T. Ikeda, Performance of double-step Savonius rotor for environmentally friendly hydraulic turbine. Journal of Fluid Science and Technology, Vol. 3, 2008.
[6]J. Menet, B. Nachida, Increase in the Savonius rotors efficiency via a parametric investigation, European Wind Energy Conference, 2004.
[7]M. J. Rajkumar, U. K. Saha, D. Maity, Simulation of flow around and behind a Savonius rotor, International Energy Journal, Vol. 6, pp. 83-90, 2005.
[8]J. V. Akwa, Savonius wind turbine aerodynamics analysis using computational fluid dynamics, MSc dissertation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2010 [in Portuguese].
[9]M. S. U. K. Fernando, V. J. Modi, A numerical analysis of the unsteady flow past a Savonius wind turbine, Journal of Solar Energy Engineering, Vol. 111, 1989.
[10]J. Menet, A double-step Savonius rotor for local production of electricity: a design study, Renewable Energy, Vol. 29, pp. 1843-1862, 2004.
[11]T. Hayashi, Y. Li, Y. Hara, Wind tunnel tests on a different phase three stage Savonius rotor, Japan Society Mechanical Engineering, Vol. 48, pp. 9-16, 2005.
[12]U. K. Saha, M. J. Rajkumar, On the performance analysis of Savonius rotor with twisted blades, Renewable Energy, Vol. 31, pp. 1776-1788, 2006.
[13]U. K. Saha, S. Thotla, D Maity, Optimum design configuration of Savonius rotor through wind tunnel experiments, Wind Engineering and Industrial Aerodynamics, Vol. 96, pp. 1359-1375, 2008.
[14]I. Al-Bahadly, Building a wind turbine for rural home, Energy for Sustainable Development, Vol. 13,pp. 159-165, 2009.
[15]J. F. Manwell, J. G. McGowan, A. L. Rogers, Wind energy explained: theory, design and application, 2002.
[16]牛山泉,風車工學入門,pp. 28-30, 2009.
[17]R. E. Wilson, Applied aerodynamics of wind power mechines, Oregon State University Corvalis, 1974.
[18]F. R. Eldridge, Wind machines. 2nd ed. New York, USA: Van Nostrand Reinhold Company, 1980.
[19]F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, American Institute of Aeronautics and Astronautics, Vol. 32, pp. 1598-1605, 1994.
[20]H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics---the finite volume method, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top