跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖紹凱
研究生(外文):Shao-Kai Liao
論文名稱:無需電力幫浦以單擊驅動之新穎渦漩式混合器研究
論文名稱(外文):A Novel Vortex Mixer Actuated by One-Shot Electricity-Free Pumps
指導教授:楊安石楊安石引用關係
指導教授(外文):An-Shik Yang
口試委員:溫志湧施陽正
口試委員(外文):Chih-Yung WenYang-Cheng Shih
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:40
中文關鍵詞:微流晶片計算流體力學渦漩式混合器
外文關鍵詞:MicrofluidicComputational fluid dynamicsVortex mixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有效的混合對於在生物技術產業、分析化學和醫藥等行業許多領域中的微流體裝置是非常重要的。然而,大部份的微混合器皆需要複雜的製作程序,在實際的微流體使用中可能是不適當的。這些混合器一般在低雷諾數條件下運作,造成了相對較長的反應時間在各種生化過程。本篇研究提出了一個新穎的半球形旋渦混合器用簡單的幾何結構以快速混合兩種液體。為了模擬混合性能,計算分析是基於暫態的三維質量守恆、動量守恆和物種濃度守恆方程式。測試液體被視為層流、不可壓縮、可互溶的性質一致的忽略重力和溫度變化影響的流動在計算域中。就此提議的混合器,同時啟動由兩個無電力驅動的指壓式幫浦,實驗和模擬結果表明強烈的漩渦生成在混合室的核心區域,在單觸發混合中實現了混合指標上升至93%。

Effective mixing is vitally important to many microfluidic devices in the areas of biotechnical industries, analytic chemistry and medical industries. However, most micro-mixers require complicated fabrication procedures, maybe improper for practical microfluidic utilization. These mixers generally operate under low Reynolds-number conditions, causing a relatively long reaction time in various biochemical processes. This study presents a novel hemisphere-shaped vortex mixer to rapidly mix two liquids with simple geometric structure. To simulate mixing behavior, computational analysis is based on the transient three-dimensional conservation equations of mass, momentum and species concentration. The liquids are treated as laminar, incompressible, miscible, uniform-property flows with insignificant gravity and temperature variation effects over the calculation domain. Considering the proposed mixer concurrently actuated by two finger-pressed pumps without electrical power, both experimental and simulation results show an intense swirling eddy formed in the core region of mixing chamber, achieving a mixing index up to 93% in a one-shot mixing event.

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2文獻回顧 1
1.3 研究目的 3
第二章 渦旋流場理論分析 4
2.1基本假設與統御方程式 4
2.1.1基本假設 4
2.1.2統御方程式 4
2.1.3混合指標的定義 5
2.2邊界條件 6
2.3指壓條件 7
2.4數值方法 8
2.5模擬軟體介紹 12
2.5.1CFD-GEOM 12
2.5.2CFD-ACE 12
2.5.3Tecplot 12
第三章 渦旋混合器設計製作與實驗量測 17
3.1實驗設計與製作 17
3.2實驗方法 19
第四章 結果與討論 21
4.1實驗與數值網格驗證 21
4.1.1網格獨立性 21
4.1.2數值模擬與實驗暫態混合效率比對分析 23
4.2混合結果分析 25
4.2.1實驗結果與數值分析 25
4.2.2渦旋流場結構 29
4.3指壓誤差參數分析 31
第五章 結論與未來應用 32
5.1 總結分析 32
5.2 未來應用 33
5.2.1 模組化全分析系統 33
5.2.2 渦漩混合器於ccPCR之應用 34
參考文獻 36
符號彙編 39
附 錄 40


[1]Stone, H. A., Stroock, A. D., and Ajdari, A., "Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip," Annual Review Fluid Mechanics, pp. 381-411, January 2004.
[2]Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R., and Weigl, B. H., "Microfluidic Diagnostic Technologies for Global Public Health," Nature, pp. 412-418, July 2006.
[3]Burke, B. J., and Regnier, F. E., "Stopped-Flow Enzyme Assays on a Chip Using a Microfabricated Mixer," Analytical Chemistry, pp. 1786-1791, April 2003.
[4]Nguyen, N. T., and Wu, Z., "Micromixers-a review," Journal of Micromechanics and Microengineering, pp. R1-R16, 2005.
[5]Xia, H. M., Wan, S. Y. M., Shu, C., and Chew, Y. T., "Chaotic Micromixers Using Two-Layer Crossing Channels to Exhibit Fast Mixing at Low Reynolds Numbers," Lab on a Chip, pp. 748-755, 2005.
[6]Ottino, J. M., and Wiggins, S., "Designing Optimal Micromixers," Science, pp. 485-486, July 2004.
[7]Campbell, C. J., and Grzybowski, B. A., "Microfluidic Mixers: From Microfabricated to Self-Assembling Devices," Philosophical Transactions of the Royal Society A, pp. 1069-1086, 2004.
[8]Oddy, M. H., Santiago, J. G., and Mikkelsen, J. C., "Electrokinetic Instability Micromixing," Analytical Chemistry, pp. 5822-5832, December 2001.
[9]Kolbl, A., Kraut, M., and Schubert, K., "The Iodide Iodate Method to Characterize Microstructured Mixing Devices," AIChE Journal, pp. 409-419, March 2008.
[10]Kolbl, A., Kraut, M., and Wenka, A., "Design Parameter Studies on Cyclone Type Mixers," Chemical Engineering Journal, pp. 444-454, 2011.
[11]Hartridge, H., and Roughton, F.J.W., "Method of Measuring the Velocity of Very Rapid Chemical Reactions," Proceedings of the Royal Society of London. Series A, pp. 376-394, 1923.
[12]Chung, Y. C., Hsu, Y. L., Jen, C. P., Lu, M. C., and Lin, Y. C., "Design of Passive Mixers Utilizing Microfluidic Self-Circulation in the Mixing Chamber," Lab on a Chip, pp. 70-77, 2004.
[13]Lin, C. H., Tsai, C. H., and Fu, L. M., "A Rapid Three-Dimensional Vortex Micromixer Utilizing Self-Rotation Effects Under Low Reynolds Numbers Conditions," Journal of Micromechanics and Microengineering, pp. 935-943, 2005.
[14]Lin, C. H., Tsai, C. H., Pan, C. W., and Fu, L. M., "Rapid Circular Microfluidic Mixer Utilizing Unbalanced Driving Force," Biomed Microdevices, pp. 43-50, 2007.
[15]Liu, Y., Cheng, C., Liu, Y., Prud’homme, R. K., and Fox, R. O., "Mixing in a Multi-Inlet Vortex Mixer (MIVM) for Flash Nano-Precipitation," Chemical Engineering Science, pp. 2829-2842, June 2008.
[16]Yang, S. Y., Lin, J. L., and Lee, G. B., "A Vortex-Type Micromixer Utilizing Pneumatically Driven Membranes," Journal of Micromechanics and Microengineering, pp. 1-9, 2009.
[17]Wang, J. H., Wang, C. H., Lin, C. C., Lei, H. Y., and Lee, G. B., "An Integrated Microfluidic System for Counting of CD4+/CD8+ T Lymphocytes," Microfluid Nanofluid, pp. 531-541, 2011.
[18]Long, M., Sprague, M. A., Grimes, A. A., Rich, B. D., and Khine, M., "A Simple Three-Dimensional Vortex Micromixer," Applied Physics Letters, pp. 133501, 2009.
[19]Lee, Y. K., Tabeling, P., Shih, C., and Ho, C. M., "Characterization of a MEMS-Fabricated Mixing Device," ASME International Mechanical Engineering Congress & Exposition, pp. 505-511, 2000.
[20]Sheen, H. J., Hsu, C. J., Wu, T. H., Chu, H. C., Chang, C. C., and Lei, U., "Experimental Study of Flow Characteristics and Mixing Performance in a PZT Self-Pumping Micromixer," Sensors and Actuators A, pp. 237-244, 2007.
[21]Suhas V. Patankar, Numerical heat transfer and fluid flow, Washington: Hemisphere Pub. Corp., 1980.
[22]Van Doormaal, J. P., and Raithby, G. D., "Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows," Numerical Heat Transfer, pp. 147-163, 1984.
[23]Jang, D. S., Jetli, R., and Acharya, S., "Comparison of the PISO, SIMPLER, and SIMPLEC Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems," Numerical Heat Transfer, pp. 209-228, 1986.
[24]D. S. Liou, Y. F. Hsieh, L. S. Kuo, C. T. Yang, P. H. Chen, "Modular component design for portable microfluidic devices," Microfluid Nanofluid, vol.10, 2011, pp. 465-474.
[25]黃銘希,模組化微流元件的優化與效能分析,碩士論文,國立臺灣大學機械工程學研究所,台北,2011。
[26]謝一帆,單一溫控熱對流聚合酶連鎖反應系統之開發與研究,碩士論文,國立臺灣大學機械工程學研究所,台北,2007。
[27]張維真,兩種新型毛細管熱對流聚合酶連鎖反應機台的開發與研究,碩士論文,國立臺灣大學機械工程學研究所,台北,2011。
[28]周文彬,一種新式核酸擴增系統之研究-毛細管熱對流聚合酶連鎖反應,博士論文,國立臺灣大學機械工程學研究所,台北,2011。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top