跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/23 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉柏宏
研究生(外文):Po-Hung Liu
論文名稱:運用計算流體力學模擬與微機電製程技術於微粒子分離和收集應用之微流晶片研發
論文名稱(外文):Using CFD Simulations and MEMS Fabrication Technology to Develop Microfluidic Chips for Micro-particle Separation and Collection
指導教授:楊安石楊安石引用關係
口試委員:溫志湧簡良翰
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:66
中文關鍵詞:微流體晶片微分離器CFD模擬微機電製程
外文關鍵詞:MicrofluidicsCell seperationCFD simulationsMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
半導體產業的蓬勃發展使微機電製程技術逐漸成熟,並且運用於各相關領域之研究,尤其是生醫領域已應用相關製程技術將製藥、檢測等設備微小化。本文即設計並製作出一個微型分離晶片,並以不同尺寸的螢光粒子測試分離的有效性,探討不同濃度之樣本溶液及流量操作條件對於分離效率的影響。研究先應用計算流體力學軟體CFD-ACE+模擬分離機制及瞭解內部流場現象,並導引可分離不同微粒微分離晶片的設計。實驗量測顯示樣本濃度為10⁴particles/ml且流量操作條件為Re= 1時,對於小顆螢光粒子的分離可達到83%,且在收集分離後含有大顆螢光粒子之樣本與原始樣本比較可達成約5.6倍的樣本純化效果。

The semiconductor industry has facilitated advancement of the MEMS fabrication technology for various applications. Specially, many researchers in the biomedical area have realized miniaturization of pharmaceutical and detection devices. This study aims to design and fabricate microfluidic chips for separation of cells, as well as to test the effectiveness of chips by fluorescent particles at different sizes. We also investigated the separation efficiency under various operating conditions by varying the sample particle density and flowrate. In the analysis, the commercial computational fluid dynamics (CFD) software CFD-ACE +® was employed to simulate the separation mechanism and better understand the internal flowfield process for guiding the microfluidic chip design. Considering the concentration of 10⁴ particles/ml and at Re= 1, the experimental results indicated a separation outcome of 83% for the small fluorescent particles with 10 μm in diameter, as well as a purification ratio of 5.6 for the collected sample containing large (25-μm) fluorescent particles as compared to the original solution.

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 4
1.4文獻回顧 5
1.4.1主動式分離技術 5
1.4.2被動式分離技術 11
第二章 實驗方法及步驟 18
2.1微分離晶片設計 18
2.2微分離晶片製程 18
2.3真空採血管之流量測試 37
2.4分離效率量測實驗 39
第三章 理論分析 43
3.1基本假設及統御方程式 43
3.1.1基本假設 43
3.1.2統御方程式 44
3.2數值方法 45
第四章 結果與討論 49
4.1基本流場現象 49
4.2計數盤計算出口螢光粒子顆數 53
4.3雷諾數對分離效率影響 55
4.4粒子濃度對分離效率影響 58
第五章 結論與建議 61
參考文獻 62


[1]Wlodkowic, D. and Cooper, J.M. Microfabricated analytical systems for integrated cancer cytomics. Anal Bioanal Chem 398:193–209, 2010
[2]王凱正、李定智。流體聚焦微管道之流場及出口分流率控制與微粒分離之研究,國立成功大學航空太空工程研究所碩士論文,民國九十七年。
[3]Oosterbroek, R.E. and van den Berg, A. Lab-on-a-Chip: Miniaturized systems for bio(chemical) analysis and synthesis, Elsevier Science, second edition, 402. 2003
[4]Geschke, O., Klank, H. and Telleman, P. Microsystem Engineering of Lab-on-a-chip Devices, 1st ed, John Wiley & Sons., 2004
[5]Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R. and Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 442 (7101), 412-418, 2006
[6]Herold, K.E. and Rasooly, A. Lab-on-a-Chip Technology: Fabrication and Microfluidics. Caister Academic Press., 2009
[7]Herold, K.E. and Rasooly, A. Lab-on-a-Chip Technology: Biomolecular Separation and Analysis. Caister Academic Press., 2009
[8]Manz, A., Graber, N. and Widmer, H.M. Miniaturized total chemical-analysis systems - a novel concept for chemical sensing. Sensors and Actuators B-Chemical, 1, 244-248., 1990
[9]Whitesides, G.M. The origins and the future of microfluidics.Nature 442(7101):368–373, 2006
[10]Beebe, D.J., Mensing, G.A., Walker, G.M. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286, 2002
[11]Cheng, X.H. et al A microfluidic device for practical labelfree CD4+ T cell counting of HIV-infected subjects. Lab Chip 7(2):170–178, 2007
[12]Chin, C.D., Linder, V., Sia, S.K. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7(1):41–57, 2007
[13]Gascoyne, P. et al Microsample preparation by dielectrophoresis: isolation of malaria. Lab Chip 2(2):70–75, 2002
[14]Gascoyne, P., Satayavivad, J., Ruchirawat, M. Microfluidic approaches to malaria detection. Acta Tropica 89(3):357–369, 2004
[15]Hedlund, E. et al Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells 25(5):1126–1135, 2007
[16]Korecka, J.A., Verhaagen, J., Ho,l E.M. Cell-replacement and gene-therapy strategies for Parkinson’s and Alzheimer’s disease. Regen Med 2(4):425–446, 2007
[17]Wu, Z.G. et al Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading. Biomed Microdevices 10(5):631–638, 2008
[18]Daniel, L., Ponnusamy, S., Aniza, M., Mahesh, C., Guolin, X., Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device. Journal of Chromatography A, 1217:1862–1866, 2010
[19]Colter, D.C., Sekiya, I., Prockop, D.J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98(14):7841–7845, 2001
[20]David, R., Groebner, M., Franz, W.M. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells 23(4):477–482, 2005
[21]Chin, C.D., Linder, V., Sia, S.K. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7(1):41–57, 2007
[22]Gardeniers, J.G.E., van den, B. A. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem 378(7):1700–1703, 2004
[23]Soper, S.A. et al Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21(10):1932–1942, 2006
[24]Tudos, A.J., Besselink, G.A.J., Schasfoort, R.B.M. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1(2):83–95, 2001
[25]Mark, M., et al Microfluidic sorting of mammalian cells by optical force switching. Nature Biotechnology Vol. 23 Number 1, 2005
[26]Anne, Y.F., et al A microfabricated fluorescence-activated cell sorter. Nature Biotechnology Vol. 17, 1999
[27]Lee, H., Purdon, A.M., and Westervelt, R.M. Manipulation of biological cells using a microelectromagnet matrix Appl. Phys. Lett., Vol. 85, No. 6, 2004
[28]Xia, N., et al Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308, 2006
[29]Pohl, H.A., Some Effects of Nonuniform Fields on Dielectrics. Journal of Applied Physics, 1958
[30]Doh, I., Cho, Y.H., A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensors and Actuators A 121:59-65, 2005
[31]Lliescu, C., Tay, F.E.H., Xu, G., Yu, L., Cell separation technique in dilectrophoretic chip with bulk electrode. BioMEMS and Nanotechnology II, 2006
[32]Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. and Chu, S., Observation of a single-beam gradient force optical trap for dielectric particles. OPTICS LETTERS, Vol. 11, No. 5, 1986
[33]MacDonald, M.P., G. C. Spalding, G.C., and Dholakia, K., Microfluidic sorting in an optical lattice. NATURE, VOL 426, 27, 2003
[34]Enger, J., Goksör, M., Ramser, K., Hagberg, P., Optical tweezers applied to a microfluidic system. Lab Chip, 196-200, 2004
[35]Wilding, P., Kricka, L.J., Cheng, J., Hvichia G., Shoffner, M.A., Fortina, P., Integrated Cell Isolation and Polymerase Chain Reaction Analysis Using Silicon Microfilter Chambers. Analytical Biochemistry, 257, 95–100, 1998
[36]Chen, X., Cui, D.F, Liu, C.C., Li, H., Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sensors and Actuators B, 130, 216–221, 2008
[37]Lee, D., Sukumar, P., Mahyuddin, A., Choolani, M., and Xu, G., Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device. Journal of Chromatography A, 1217, 1862–1866, 2010
[38]Inglis, D.W., Davis, J.A., Austin, R.H., Sturm, J.C., Critical particle size for fractionation by deterministic lateral displacement. Lab Chip, 6, 655–658, 2006
[39]Davis, J.A., et al Deterministic hydrodynamics: Taking blood apart. National Acad Sciences, 103, 14779-14784, 2006
[40]Yamada, M., and Seki, M., Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip, 5, 1233–1239, 2005
[41]Yamada, M., et al Microfluidic devices for size-dependent separation of liver cells. Biomed Microdevices 9:637–645, 2007
[42]Yamada, M., Nakashima, M., and Seki, M., Pinched Flow Fractionation:Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel. Analytical Chemistry, Vol. 76, No. 18, 2004
[43]Takagi, J., Yamada, M., Yasuda, M., Seki, M., Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip, 5, 778–784, 2005
[44]Kuntaegowdanahalli, S.S., Bhagat, A.A.S., Kumar, G., Papautsky, I., Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip, 9, 2973–2980, 2009
[45]Bhagat, A.A.S., Kuntaegowdanahalli, S.S., Papautsky, I., Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip, 8, 1906–1914, 2008,
[46]Van Doormaal, J.P., Raithby, G.D., Enhancements of The SIMPLE Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer, Vol. 7:147-163, 1984


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊