跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:殷興邦
研究生(外文):Hsing-Pang Yin
論文名稱:電漿設備電源供應系統之電力品質改善研究
論文名稱(外文):Study of Quality Improvement on Power System of Plasma Generators
指導教授:王順源王順源引用關係
指導教授(外文):Shun-Yuan Wang
口試委員:曾傳蘆練光祐
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電資碩士在職專班研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:電力品質諧波二階阻尼濾波器
外文關鍵詞:Power qualityHarmonics2nd order damping filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著我國高科技產業蓬勃發展,各式電力的需求亦隨著產業製程的不斷精進而逐漸增加,而其中電力電子裝置所產生之諧波而引起電力劣化的問題己逐漸受到重視。在配電系統中,功率半導體切換元件的大量應用,尤其是系統中各種交直流電源轉換器,使配電系統中的電源品質受到很大的諧波污染。為了消除這些諧波,透過電力品質監測儀來量測科技廠電力品質狀況,包含諧波、電壓閃爍、電壓驟降、電壓陡升、甚至電力中斷等電力狀況量測結果顯示,工廠配電系統問題中諧波污染頗為嚴重,這將使得製程設備有時受制於諧波的問題而無法運轉於理想的狀態。
本文依據電力諧波理論,使用電力諧波量測儀表,實際量測工廠配電負載,並由筆記型電腦記錄諧波電流及諧波電壓值。依據已知負載設備,驗證電力諧波理論對設備產生諧波之現象,並以數學輔助設計軟體建立諧波分析之數學模型,並利用此模型分析負載設備造成之諧波電壓及電流。首先利用數學模型分析諧波成份及電壓不平衡的程度。然後針對配電系統要求及設備設計之規格,依據現場資料研判諧波及電壓不平衡是否需要改善。當有必要改善時,除考慮諧波之階次之外尚須配合工廠的空間限制,故此處選擇安裝二階阻尼濾波器,至於電壓不平衡的問題主要還是要做現場的三相電源配線換位工程。
最後本文提出兩個改善實例,經由這兩個實例驗證可證實本文所提出的分析方法、二階阻尼濾波器及三相電源配線換位確實可改善諧波及電壓不平衡的問題進而達到設備正常運轉要求。

Harmonic current distortion has become a major power quality problem in recent years. This is mainly due to the introduction of nonlinear loads, especially power electronic converters adopted in the power systems. In the meantime, they induce harmonic pollution problems. The equipment might not operate normally due to the effect. In order to reduce the harmonic pollution problems and ensure the quality of the power supply, this research measures a high-tech factory''s power quality including the harmonics, flicker and voltage unbalance ratio measurement.
This thesis in accordance with power harmonic theory to use as harmonic and power meter to measured the load of factory. Use personal computer to record the data of harmonic current and voltage. To test and verify harmonic theory with understand equipment known. We could analyze the harmonic contents and the voltage unbalance by using the mathematical model of the article. We could judge if we improve harmonic and voltage unbalance situation from field data according to the requirement of power system and production specification. When it is necessary to improve, we use 2nd order damping filter as solution for factory equipment. In addition to consider harmonic improvement, the limited space is also a challenge. The 2nd order damping filter could meet both requirements. With regard to voltage unbalance problem, it is necessary to do transposition power cable in the field.
Finally we collected two cases in this thesis. We proved that analysis method that we mentioned in this article is useful through those cases. And we verified whether we solve the problem by using 2nd order damping filter and transposition power cable through the same mathematician’s model.

摘要………………………………………………………………………………………i
ABSTRACT…………………………………………………………………………….iii
致謝……………………………………………………………………………………...v
目錄……………………………………………………………………………………..vi
表目錄…………………………………………………………………………………viii
圖目錄…………………………………………………………………………………..ix
第一章 緒論…………………………………………………………………………….1
1.1 研究動機與目的….……………………………………………………...1
1.2 國內外研究概況…………………………………………………………2
1.3 研究內容概述 …………………………………………………………...3
第二章 液晶面板製程簡介及問題描述……………………………………………….4
2.1 前言……..………………………………………………………………..4
2.2 液晶面板製程簡介 ……………………………………………………...4
2.3 問題描述 ………………………………………………………………...8
2.3.1 諧波成因………………………………………………………...12
2.3.2 諧波改善………………………………………………………...16
2.4 電壓不平衡之原因與危害.…………………………………………….20
2.4.1 造成系統電壓不平衡現象的因素……………………………...21
2.4.2電壓不平衡對負載的影響……….……………………………...21
2.5 本章結語………………….…………………………………………….22
第三章 以數學輔助設計軟體建立電力諧波之模型……………………………….24
3.1 前言……..…………………………………………………………........24
3.2 傅立葉級數簡介….…………………………………………………….24
3.3 建立傅立葉級數之數學模型 ……………………………………..…...27
3.3.1 諧波模型的參數資料描述……………………………………...28
3.3.2 重新繪入輸入電壓及電流……………………………………...29
3.3.3 以傅立葉級數重新建立輸入電壓及電流……………………...30
3.3.4 以傅立葉級數的表示法描繪電壓及電流……………………...34
3.3.5 總諧波失真率計算……………………………………………...37
3.4 電壓不平衡率計算………….……………………………………..…...38
3.5 本章結語………………….…………………………………………….40
第四章 電源諧波實例診斷及改善…………………………………………………...41
4.1 前言……..…………………………………………………………........41
4.2 量測設備………….…………………………………………………….41
4.3 案例一: 四台20Kw鍍膜設備電力診斷及分析….……….………….43
4.3.1 問題診斷………………………………………………………...43
4.3.2 案例之諧波研判………………………………………………...50
4.3.3 判斷電力是否平衡……………………………………………...50
4.3.4 安裝二階組尼濾波器後之電力品質…………………………...51
4.4 案例二: 九台20Kw鍍膜設備電力診斷及分析….……….………….53
4.4.1 問題描述………………………………………………………...55
4.4.2 案例之諧波研判………………………………………………...60
4.4.3 判斷電力是否平衡……………………………………………...61
4.4.4 安裝二階組尼濾波器後之電力品質…………………………...64
4.4.5 電源線換位後的電力品質……………………………………...65
4.5 本章結語………………….…………………………………………….66
第五章 結論與未來展望……………………………………………………………...67
5.1 結論………………….………………………………………………….67
5.2 未來展望………………….…………………………………………….68
參考文獻………………………………………………………………………..……...69


[1] 台灣電力公司,“諧波電壓暫訂標準”,電業字第7605~0160 函,民國七十六年五月四日。
[2] 蕭純育,“台電諧波管制標準之制訂與執行”,電機技師月刊,59 期,民國85 年6 月,第33 至63 頁。
[3] ANSI/IEEE Std. 519-1992, "IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power System", IEEE/519-1992, April 1993.
[4] Joseph S. Svjab, Jr., John S. Mcqikin, "Harmonics – Causes, Effects, Measurement and Analysis: An Update", IEEE Trans. on Industry Application, Vol.26, No.6, 1980.
[5] E. H. Watanabe, R. M. Stephan, M. Aredes, "New Concepts of Instantaneous Active and Reactive Powers In Electrical System with Generic Loads", IEEE Trans. on Power Delivery, Vol. 8, No. 2, pp. 697-703, 1993.
[6] L. Benchaita, S. Saadate, A. Salem nia, "A Comparison of Voltage Source and Current Source Shunt Active Filter by Simulation and Experimentation", IEEE Trans. on Power Systems, Vol. 14, No. 2, pp. 642-647, May 1999.
[7] V. B. Bhavaraju, P. Enjeti, "A Fast Active Filter to Correct Line Voltage Sags", IEEE trans. on industrial electronics, Vol. 41, No. 3, pp. 333-338, 1994.
[8] Y. Hayachi, N. Sato, K. Takahashi, "A Novel Control of a Current Source Active Filter for AC Power System Harmonic Compensation", IEEE Trans. on Industry Applications, Vol. 27, No. 2 , pp. 380-384, 1991.
[9] F. B. Libano, J. A. Cobos, J. Uceda, "Simplified Control Strategy for Hybrid Active Filters", Conf. PESC’97, pp. 1102-1108, 1997.
[10] IEEE Working Group on Power System Harmonics, "Power Line Harmonic Effects on Communication Line Interference", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-104, No.9, pp.2578-2587, 1985.
[11] D. W. McLellan and D. H. Potter, "Telephone Interference from Power Line Loads Regulated by Semiconductor Control Drives" IEEE/IAS Annual Meeting, pp.1001-4, 1975.
[12] J. Reeve and J. A. Baron, "Harmonic Interaction Between HVDC Converters and AC Power System", IEEE Trans., PAS-90, pp.2785-2793, Nov. 1971.
[13] IEEE Task Force on the Effects of Harmonics, "Effects of Harmonic on Equipment", IEEE Trans. on Power Delivery, Vol. 8, No. 2, pp. 681-688, April 1993.
[14] L. J. Jacovides, "Analysis of Induction Motor Drives with a Nonsinusoidal Supply Voltage Using Fourier Analysis", IEEE Trans., Vol. IA-9, pp.741-7, Nov./Dec. 1973.
[15] G. C. Jain, "The Effect of Wave Shape on the Performance of a 3-Phase Induction Motor", IEEE Trans., PAS-83, pp.561-6, June 1964.
[16] C. J. Chou, C. W. Liu, J. Y. Lee, K. D. Lee, "Optimal Planning of Large Passive-Harmonic-Filters Set at High Voltage Level", IEEE Trans. on Power Systems, Vol.15, No.1, PP.433-441, February 2000.
[17] 李俊耀,"高壓大容量被動式諧波濾波器之最佳規劃",碩士論文,私立中原大學,民國八十七年。
[18] 鄭振東譯,交換式穩壓電源的高諧波干擾對策,台北:全華科技圖書股份有限公司,2001。
[19] 裕山電機公司, "諧波對電力電容器的影響", 電機技師月刊, 第63 期, pp.125-140。
[20] 江榮城,電力品質實務,台北:全華科技圖書股份有限公司,1990。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top