跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施政良
研究生(外文):Cheng-Liang Shih
論文名稱:利用CSRZ-DPSK調變應用於長距離高密度分波多工傳輸系統之研究與設計
論文名稱(外文):The Research and Design for CSRZ-DPSK Long-Haul Distance DWDM Transmission System
指導教授:賴柏洲賴柏洲引用關係
口試委員:林修聖杜日富魏水根
口試日期:2011-12-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電資碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:高密度分波多工系統混合式光纖放大器載波抑制歸零差動相位偏移鍵制
外文關鍵詞:Dense Wavelength Division MultiplexingHybrid Fiber AmplifierCarrier-Suppressed Return-to-Zero Differential Phase-Shift Keying
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文首先研究利用摻鉺光纖放大器(EDFA),搭配單模光纖(SMF)與色散補償光纖(DCF)組合的光通信系統,來分析非歸零(Non-return to Zero;NRZ)碼、歸零(Return to Zero;RZ)碼、載波抑制歸零(Carrier-Suppressed Return-to-Zero;CSRZ)碼等3種編碼,並以16組通道,傳輸10Gbit/s速率於C-band,設計一DWDM傳輸架構,且以60公里為一個傳輸區段(Span)的系統上,達成傳輸26個區段(1560公里)並且誤碼率(BER)低於10的負6次方,Q值大於6的長距離傳輸的要求。
另外,研究以摻鉺光纖放大器及拉曼放大器串接成混合式光放大器,同樣搭配單模光纖(SMF)與色散補償光纖(DCF),所組合成的光通信系統,應用新型的調變格式-載波抑制歸零差動相位偏移鍵制(CSRZ-DPSK)碼,並以32組通道,傳輸10Gbit/s速率於C-band,設計一DWDM傳輸架構,且以120公里為一個傳輸區段(Span)的系統上,成功達到傳輸26個區段(3120公里)並且誤碼率(BER)低於10的負6次方,Q值大於6的超長距離傳輸的要求。
未來光纖通訊將走向長距離及高傳輸速率的趨勢,在此以基本的單模光纖傳輸架構,減少變動現有系統情況下增加傳輸距離;希望本論文內容能提供學術研究及光纖通訊產業作為參考並發展更遠距離、更多傳輸通道的光纖通訊系統。


The thesis first studies the optical communication system using the Erbium-Doped Fiber Amplifier (EDFA) to combine with Single Mode Fiber (SMF) and Dispersion Compensation Fiber (DCF) ,and then analyzes the Non-return to Zero(NRZ)code、Return to Zero(RZ)code and Carrier-Suppressed Return-to-Zero(CSRZ)code . With in the 16×10 Gbps long-distance transmission of DWDM transmission system structure, and take 60 km as transmits per sector (Span) on system, then transmission result is over 26 spans (1560 km), and the error rate (BER) is lower than 10-9. The Q value is bigger than “6” and met ITU-T specification in the DWDM system.
Beside, we using the hybrid Raman/ EDFA amplifier with SMF and DCF to design a long-distance DWDM transmission system , and using new CSRZ-DPSK code, take 32 channels, by the 10Gbit/s speed in C-band, then take 120 km as transmits per sector (Span) on the system is success achieves the transmission 26 sectors (3120 km), and the error rate (BER) is lower than 10-9.The Q value is bigger than “6” and met ITU-T specification in the DWDM system.


中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文結構 2
第二章 光纖放大器之工作原理與特性簡介 3
2.1光纖放大器介紹 3
2.2掺鉺光纖放大器 5
2.2.1 掺鉺光纖放大器的基本架構 6
2.2.2 掺鉺光纖放大器的工作原理 7
2.2.3 掺鉺光纖放大器的特性 9
2.3拉曼光纖放大器 13
2.3.1 拉曼光纖放大器的基本架構 13
2.3.2 拉曼光纖放大器的工作原理 16
2.3.3 拉曼光纖放大器的特性 17
2.4光纖的非線性效應 18
2.4.1 四波混合 19
2.4.2 自相位調變 20
2.4.3 交互相位調變 21
2.4.4 受激拉曼散射 22
2.4.5 受激布里淵散射 24
2.4.6 雙重雷利散射 25
2.5 光纖放大器的比較 26
第三章 調變格式理論探討 28
3.1 調變簡介 28
3.2 調變格式概述 29
3.2.1 非歸零開關鍵制碼 29
3.2.2 歸零開關鍵制碼 31
3.2.3 載波抑制歸零開關鍵制碼 33
3.2.4 載波抑制歸零差動相位偏移鍵制碼 36
3.3 系統效能判別 39
3.3.1 誤碼率計算 40
3.3.2 眼圖分析 42
第四章 系統設計說明與效能比較結果 46
4.1掺鉺光纖放大器模式之NRZ與RZ及CSRZ信號的比較結果 46
4.1.1 系統設計說明 46
4.1.2 NRZ系統效能與比較 50
4.1.3 RZ系統效能與比較 56
4.1.4 CSRZ系統效能與比較 62
4.1.5 小節結論 68
4.2拉曼/掺鉺混合光纖放大器模式之CSRZ-DPSK調變的研究結果 69
4.2.1 系統設計說明 69
4.2.2 CSRZ-DPSK系統效能與比較 76
第五章 結論與未來展望 80
5.1 結論 80
5.2 未來展望 81
參考文獻 82


[1] 賴柏洲編著,光纖通信與網路技術,全華科技圖書公司,台北,2003,第1-2頁。
[2] N. Takachio and H. Suzuki, “Applications of Raman-Distributed Amplification to WDM Transmission Systems Using 1.55-μm Dispersion-Shifted Fiber,” J. Lightw. Technol., vol. 19, 2001, pp.60-69.
[3] A. Sano, Y. Miyamoto, and S.Kuwahara, et al.,“A 40-Gb/s/ch WDM transmission with SPM/XPM suppression through prechirping and dispersion management,”J.Lightwave Technology, vol. 18, 2000, pp.1519-1527.
[4] G. P. Agrawal, Nonlinear fiber optics, Academic Pressfourth, San Diego, 2007.
[5] W.K.Bums,“Linear and nonlinear effects in lightwave transmission:dispersion management in terrestrial and tmdersea systems,”in OFC 2002, pp. 79.
[6] A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightw. Technol., vol. 23, 2005, pp. 115-130.
[7] W. Li, M. Chen, Y. Dong, and S. Xie,“All-Optical Format Conversion From NRZ to CSRZ and Between RZ and CSRZ Using SOA-Based Fiber Loop Mirror,”IEEE Photonics Technology Letters, vol. 16, no. 1, 2004, pp. 203-205.
[8] C. W. Chow, “Wavelength Remodulation Using DPSK Down-and-Upstream With High Extinction Ratio for 10-Gb/s DWDM-Passive Optical Networks,” IEEE Photonics Technology Letters, vol. 20, no. 1, 2008, pp. 12-14.
[9] 上下真司編著,圖解光纖通信原理與最新應用技術,建興文化事業有限公司,台北,2003,第166-171頁。
[10] J. Franz and V. Jain, Optical communications components and systems, Alpha
Science, UK, 2000.
[11] J. Bromage, “Raman amplification for fiber communication system,” in OFC
2003, Atlanta, Georgia, USA, Paper TuC1, pp. 32-35.
[12] 李長春編著,超長距離光傳輸技術基礎及其應用,人民郵電出版社,北京,
2008,第22-111頁。
[13] F. Enrico,Optical communication theory and techniques,Springer,N.Y.,2005.
[14] J. H. Chen, “Implementation and Research of the Broadband and High-Gain
Raman Fiber Amplifier,” M D. Thesis, Graduate Institute of Computer and
Communication Engineering, National Taipei University of Technology,
Taipei, 2006.
[15] R. E. Neuhauser, P. M. Krummrich, H. Bock, and C. Glingener, “Impact of
nonlinear pump interactions on broadband distributed Raman amplification,"in
OFC 2001, vol. 1, 2001, pp. MA4-1-MA4-3.
[16] F. D. Pasquale, and F. Meli, “New Raman pump module for reducing
pump-signal four-wave-mixing interaction in co-pumped distributed Raman amplifiers," IEEE J. Lightw. Technol. , vol. 21, no. 8, 2003, pp.1742-1748.
[17] M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Impact of stimulated Brillouin
scattering on fiber Raman amplifiers,"Electron. Lett., vol. 27, no. 17, 1991, pp. 1576-1577.
[18] P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R.Pedrazzani, and D.J.DiGiovanni,“Rayleigh scattering limitations in distributed Raman pre-amplifiers,”IEEE Photonics Technology Letters, vol. 10, 1998, pp. 159-161.

[19] S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee,“Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals,”Electronics Letters, vol. 38, 2002, pp. 865-867.
[20] Z. Tong, H. Wei, and S. S. Jian,“Optimal design of multistage discrete Raman amplifiers incorporating midway isolators,”IEEE Photonics Technology Letters, vol. 16, 2004, pp. 2230-2232.
[21] A. Kimsas, P. Staubo, S. Bjornstad, B. Slagsvold, and A. Sudbo, “A dispersion compensating Raman amplifier with reduced double Rayleigh backscattering, employing standard DCF,”Transparent Optical Networks, vol. 2, 2004, pp. 326-329.
[22] W. N. Jiang, J. P. Chen, and J. H. Zhou,“Optimal position of isolator to suppress double Rayleigh backscattering noise in fiber Raman amplifiers,” Ieice Transactions on Electronics, vol. E88C, 2005, pp. 721-724.
[23] Z. Tong, H. Wei, and S. S. Tan,“Comparison of different Raman amplification schemes in long-span fiber transmission systems with double Rayleigh backscattering,”IEEE Photonics Technology Letters, vol. 15, 2003, pp. 1782-1784.
[24] J. Bromage, J. C. Bouteiller, H. J. Thiele, K. Brar, L. E. Nelson, S. Stulz, C. Headley, J. Kim, A. Klein, G. Baynham, L. V. Jørgensen, L. GrünerNielsen, R. L. L. Jr., and D. J. DiGiovanni,“High co-directional Raman gain for 200-km spans, enabling 40* 10.66 Gb/s transmission over 2400 km,” in OFC 2003.
[25] A. J. Stentz, S. H. Grubb, C. E. Headley, J. R. Simpson, T. Strasser, and N. Park,“Raman amplifier with improved system performance,”in OFC ''96 Tech. Dig., 1996, pp. 15-16.

[26] A. Carena, V. Curri, and P. Poggiolini“On the optimization of hybrid Raman/erbium-doped fiber amplifiers,”IEEE Photonics Technology Letters, vol. 13, 2001, pp. 1170-1172.
[27] J. Wang, J. Sun, X. Zhang, and D. Huang, “Proposal for PPLN-Based All-Optical NRZ-to-CSRZ, RZ-to-CSRZ, NRZ-DPSK-to-CSRZ-DPSK, and RZ-DPSK-to-CSRZ-DPSK Format Conversions,”IEEE Photon. Technol. Lett., vol. 20, no. 12, Jun. 2008.
[28] M. Pfennigbauer and P. Winzer, “Choice of MUX/DEMUX Filter Characteristic for NRZ, RZ, and CSRZ DWDM Systems,” Journal of Lightwave Technology, vol. 24, no. 4, 2006, pp.1689-1696,.
[29] 楊祥林編著,光纖通信系統,國防工業出版社,北京,2002,第28-62頁。
[30] H. S. Kyung and J. S. Lee, “Signal transmission analysis of backward-pumped fiber Raman amplifiers,” IEEE Photonics Technology Letters, vol. 14, no.7, 2002, pp.932-934.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top