跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁雅玲
研究生(外文):Ya-Ling Weng
論文名稱:台灣製造業之知識外溢效果分析
論文名稱(外文):Knowledge spillover effects in the Taiwanese manufacturing industry
指導教授:洪子逸洪子逸引用關係
口試委員:吳斯偉洪志銘
口試委員(外文):Chin Ming Hung
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:服務與科技管理研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:55
中文關鍵詞:知識外溢雲端運算
外文關鍵詞:Knowledge spilloverscloud computing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
知識外溢的研究者常指出,知識外溢對生產力有顯著且正向的關係。此外,在近年來,雲端運算在商業及生產程序上的應用已有相當顯著的增加。一般普通認為雲端運算具備可靠、可擴張及降低成本等優勢。但有關探討知識外溢及雲端運算之關聯的實證研究仍屬少見。所以,本研究試圖探討知識外溢與雲端運算的關係。本研究包含質性與量化資料分析。首先,使用量化模型分析台灣上市公司資料。其次,運用個案研究雲端運算與知識擴散的關係。研究結果發現,台灣製造業的知識外溢對於生產力有些許且顯著的影響。此外,本研究以廣達電腦做為個案研究實證雲端運算與知識外溢的關係。研究結果顯示,雲端運算並無法直接影響公司的知識外溢。本研究可促使對知識擴散與雲端運算的關係有更清楚的了解。

Research of knowledge spillovers has often suggested that knowledge spillovers have a significant and positive effect on productivity. Moreover, the use of cloud computing in business and product process in recent years has increased noticeably. It is generally agreed that cloud computing has the advantage of reliability, scalability and lower cost etc. However, there is scant research of empirically documented the link between knowledge spillovers and cloud computing. Therefore, the aim of this study attempts to explore how knowledge spillovers and cloud computing are related. This research involved both qualitative and quantitative data analyses. The first step is quantitative analysis of the database which is collected from Taiwan Stock Exchange (TWSE) listed companies. The second step uses case study to examine the relationship between cloud computing and knowledge spillovers. Results of this study show that knowledge spillovers in the Taiwanese manufacturing industry have a little but significant influence on productivity. This research uses Quanta as a case study to examine the relationship between cloud computing and knowledge spillovers. The findings suggest that cloud computing does not have direct effect on knowledge spillovers. This study may lead to a better understanding of the relationship between knowledge spillovers and cloud computing.

ABSATRCT i
摘 要 iii
CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES vi
Chapter 1 INTRODUCTION 1
1.1 The Purpose of the Research 1
1.2 The Organization of the Research 3
Chapter 2 LITERATURE REVIEW 4
2.1 Knowledge Spillovers 4
2.2 Measuring the Knowledge Spillovers 8
2.3 Cloud Computing 12
2.4 Summary 17
Chapter 3 METHODOLOGY 18
3.1 Database 18
3.2 Model and Variables 20
3.3 Panel Estimation 25
3.4 Generalize Method of Moments Estimation 27
Chapter 4 RESULTS AND DISCUSSIONS 28
4.1 Descriptive Statistics 28
4.2 Regression Results 30
Chapter 5 CASE STUDY 34
5.1 Company Introduction 34
5.2 Quanta Computer’s Cloud strategy 38
5.3 Case Study Analysis 40
5.4 Summary 44
Chapter 6 CONCLUSIONS 45
REFERENCES 47


REFERENCES
Acs, Z.J., Braunerhjelm, P., Audretsch, D.B., & Carlsson, B. (2009). The knowledge spillover theory of entrepreneurship. Small Business Economics. Dordrech, 32(1), 15-30.
Agarwal, R., Ganco, M., & Ziedonis, R.H. (2009). Reputations for toughness in patent enforcement: implications for knowledge spillovers via inventor mobility. Strategic Management Journal, 30(13), 1349-1374.
Ahn, S. C., & Schmidt, P. (1992). Efficient estimation of panel data with exogenous and lagged dependent regressors. Journal of Econometrics, 68, 5-27.
Alonso-Borrego, C., & Sanchez-Mangas, R. (2001). GMM estimation of a production function with panel data: An application to Spanish manufacturing firms. Statistics and Econometrics Working Papers: ws015527. Retrieved from http://ideas.repec.org/p/cte/wsrepe/ws015527.html
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58, 277-297.
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2009). Above the clouds: A Berkeley view of cloud computing. Technical report No. UCB/EECS-2009-28. California: Berkeley Reliable Adaptive Distributed Systems Laboratory.
Arora, A., & Fosfuri, A. (1998). Licensing in the Chemical Industry. Working Paper, Heinz School of Public Policy and Management, Carnegie Mellon University.
Arrow, K. J. (1962). The economic implications of learning by doing. The Review of Economics Studies, 29(3), 155-173.
Basant, R, & Fikkert, B. (1996). The effects of R&D, foreign technology purchase, and domestic and international spillovers on productivity in Indian firms. Review of Economics and Statistics, 78, 187-199.
Bernstein, J. I. (1988). Costs of production, intra-and inter-industry R&D spillovers: Canadian evidence. Canadian Journal of Economics, 21, 324-347.
Bernstein, J. I. (1989). The structure of Canadian Inter-industry R&D spillovers, and the rates of return to R&D. Journal of Industrial Economics, 37, 315-28.
Bernstein, J. I., & Nadiri, M. I. (1988). Interindustry R&D spillovers, the rates of return and production in high-tech industries. American Economic Review, 21, 324-347.
Bernstein, J. I., & Nadiri, M. I. (1991). Product demand, cost of production, spillovers, and the social rate of return to R&D. NBER Working Paper: 3625. Retrieved from http://www.nber.org/papers/w3625
Bernstein, J. I., & Nadiri, M.I. (1989). Research and development and intraindustry spillovers: an empirical application of dynamic duality. Review of Economic Studies, 56, 249-269.
Blundell, R., & Bond, S. (1998). GMM estimation with persistent panel data: An application to production functions. IFS Working Papers: W99/04. Retrieved from http://www.ifs.org.uk/publications/2722
Blundell, R., & Bond, S. (2000). GMM estimation with persistent panel data: an application to production functions. Econometric Reviews, 19(3), 321-340.
Blundell, R., & Bond, s., & Windmeijer, f. (2000). Estimation in dynamic panel data models: Improving on the performance of the standard GMM estimator. IFS Working Papers: W00/12. Retrieved from http://eprints.ucl.ac.uk/4070/1/4070.pdf
Bonte, W. (2004), Spillovers from publicly financed business R&D: Some empirical evidence from Germany. Research Policy, 33, 1635-1655.
Cameron, G., & Muellbauer, J. (1995). Knowledge, increasing returns and the UK production function. In: Mayes, D., Lansbury, M. (Eds.), Sources of Productivity Growth in the 1980s. Cambridge University Press, Cambridge.
Chen, J. R., & Lu, W. C. (2003). Effect of R&D spillover on firm growth: The case of the electronics and electrical machinery industry in Taiwan. presented at the Annual Conference of the Western Economic Association, July 11-15, 2003, Denver, USA.
Chen, J. R., & Yang, C. H. (2005). Technological knowledge, spillover and productivity: Evidence from Taiwanese firm level panel data. Applied Economics, 37(20), 2361-2370.
Chuang, Y. C., & Lin, C. M., (1999). Foreign direct investment, R&D and spillover efficiency: Evidence from Taiwan''s manufacturing firms. Journal of Development Studies, 35, 117-137.
Cincera, M. (2005). Firms'' productivity growth and R&D spillovers: an analysis of alternative technological proximity measures. Economics of Innovation and New Technology, 14(8), 657-682.
Coe, D.T., & Helpman, E. (1995). International R&D spillovers. European Economic Review, 39(5), 859-887.
Cuneo, P., & Mairesse, J. (1984). Productivity and R&D at the firm level in French manufacturing. R&D, Patents, and Productivity, 18, 375-192.
Deng, Y. (2008). The value of knowledge spillovers in the U.S. semiconductor industry. International Journal of Industrial Organization, 26 (4), 1044-1058.
Gao, Y. X. (2005, December 11). IP network series Quanta Computer’s global strategist. iT Home. Retrieved May 13, 2012, from http://www.ithome.com.tw/itadm/article.php?c=34392&s=1
Gartner Says Worldwide Cloud Services Revenue Will Grow 21.3 Percent in 2009. (n. d.). Gartner, Inc. Retrieved June 25, 2012, from the World Wide Web: http://www.gartner.com/technology/research/cloud-computing/
Gilbert, B. A. McDougall, P.P., & Audretsch, D.B. (2008). Clusters, knowledge spillovers and new venture performance: An empirical examination. Journal of Business Venturing, 23(4), 405-422.
Griliches, Z. (1979). Issues in assessing the contribution of research and development to productivity slowdown. Bell Journal of Economics, 10(1), 92-116.
Griliches, Z. (1992). The Search for R&D Spillovers. Scandinavian Journal of Economics, 94, 29–47.
Griliches, Z., & Mairesse, J. (1995). Production functions: the search for identification. NBER Working Papers No. 5067.
Griliches, Z., & Mariesse, J. (1979). Issues in assessing the contribution of research and development to productivity growth, The Bell Journal of Ecinomics, 10(1), 92-116.
Griliches, Z., (1988). Productivity puzzles and R&D: another non-explanation. Journal of Economic Perspectives, 2(4), 9-21.
Griliches, Z., 1979. Issues in assessing the contribution of research and development to productivity growth. Bell Journal of Economics, 10(1), 92–116.
Grossman, G.M., & Helpman, E. (1991). Trade, knowledge spillovers and growth. European Economic Review, 35(2), 517-526.
Haiso, C. (1986), Analysis of Panel Data. Cambridge, United Kingdom: Cambridge University Press.
Han, Y. (2010). On the clouds: a new way of computing. Information Technology and Libraries, 29(2), 87-92.
Hausman, J. A. (1978). Specification Tests in Econometrics. Econometrica, 46(6), 1251-1271.
Jaffe, A. B. (1986). Technological Opportunity and Spillovers of R&D: Evidence from Firms'' Patents, Profits, and Market Value. The American Economic Review, 76(5), 984-1001.
Kaiser, U. (2002). Measuring knowledge spillovers in manufacturing and services: an empirical assessment of alternative approaches. Research Policy, 31(1), 125-144.
Kang, M. P., Mahoney, J. T., & Tan, D. (2009). Why firms make unilateral investments specific to other firms: the case of OEM suppliers. Strategic Management Journal, 30(2), 117-135.
Katzan, H. Jr. (2010). On the privacy of cloud computing. International Journal of Management and Information Systems, 14(2), 1-12.
Katzan, H. Jr., & Dowling, W. A. (2010). Software-As-A-Service Economics. The Review of Business Information Systems, 14(1), 27-36.
Keane, M. P., & Runkle, D. E. (1992). On the estimation of panel data models with serial correction when instruments are not strictly exogenous. Journal of Business & Economic Statistics, 10, 1-9.
Koo, J. (2004). Technology spillovers, agglomeration, and regional economic development. Manuscript prepared for the Journal of Planning Literature, Maxine Goodman Levin College of Urban Affairs, Cleveland State University.
Krugman, P. (1991). Geography and Trade. Cambridge, United Kingdom: The MIT Press.
Lambooy, J. G. (2010). Knowledge transfers, spillovers and actors: the role of context and social capital. European Planning Studies, 18(6), 873-891.
Liao, G. X. (2003). Performance analysis of the notebook industry in Taiwan, Japan and South Korea. (Unpublished master’s thesis). National chengchi University, Taipei.
Liao, H. S. (2007). A study of product innovation model in conjunction with knowledge management system: case of Quanta Computer Inc. Unpublished doctoral dissertation, Yuan-Ze University, Taoyuan, Taiwan.
Lichtenberg, F. (1992). R&D investment and international productivity differences. NBER Working Paper No. 4161.
Lin, F. T. (2011). Cloud Computing as a New Computing Paradigm of Information Technology. Journal of Taiwan Intelligent Technologies and Applied Statistics, 9, 1-12.
Lin, F. T., Chen, Y. J., & Chang, C. T. (2011). Analyzing virtualization technology in layered Cloud architecture. Innovative Computing Information and Control--Express Letters, 5, 3839-3844.
Liu, S., Shichijo, N., & Baba, Y. (2010). Japanese corporate strategy on location choice of R&D activities in China: Identifying the role of knowledge spillovers. Journal of Enterprising Culture, 18(2), 167-191.
Los, B, & Verspagen, B. (2000). R&D spillovers and productivity : Evidence from U.S. manufacturing microdata. Empirical Economics, 25, 127-148.
Lu, W. C., Chen, J. R., & Wang, C. L. (2005). R&D, Spatial Spillovers and Productivity Growth: Evidence from Dynamic Panel. Mimeo, National Centre University, Taiwan.
Lu, Y. H., & Shi, G. Z. (2005). International spillovers effect of productivity-compare with Taiwan, Japan and Korea. Taiwan economic forecast and policy, 36(1), 103-130
Marshall, A. (1920). Principles of Economics. London: Macmillan.
Nieto, M., & Quevedo, P. (2005). Absorptive capacity, technological opportunity, knowledge spillovers, and innovative effort. Technovation. Amsterdam, 25(10), 1141-1157.
O''Mahony, M., & Vecchi, M. (2009). R&D, knowledge spillovers and company productivity performance. Research Policy, 38(1), 35-44.
Park, T. Y., Choung, J.Y., & Min, H. G. (2008). The cross-industry spillover of technological capability: Korea''s DRAM and TFT-LCD industries., World Development,36(12), 2855-2873.
Patel, P., Soete, L. (1988). L’evaluation des effets economiques de la technologie. STIReview, 4, 133-183.
Physical capital. (2012, June 23). Wikipedia. Retrieved June 29, 2012, from the World Wide Web: http://en.wikipedia.org/wiki/Physical_capital
Quanta Computer. Company Profile. Retrieved May 5, 2012, from http://www.quantatw.com/Quanta/english/about/company.aspx
Quanta Computer: from the thousands of computers to streamline the dozens of servers. (2009, September). Business Next, 10. Retrieved April 22, 2012, from the World Wide Web: http://www.bnext.com.tw/article/view/cid/0/id/10165.
Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing systems. Fifth International Joint Conference on INC, IMS and IDC, 44-51.
Robbins, C. A. (2006). The impact of gravity-weighted knowledge spillovers on productivity in manufacturing. Journal of Technology Transfer,31(1), 45-60.
Rouvinen, P. (2002). The existence of R&D spillovers: A cost function estimation with random coefficients. Economics of Innovation and New Technology, 11, 525-541.
Schramm, W. (1971). Notes on case studies of instructional media projects. Stanford University Instruction for Communication Research Report, California. Retrieved May 30, 2011, from http://eric.ed.gov/PDFS/ED092145.pdf
Schumpeter, J.A. (1942). Capitalism, Socialism, and Democracy. Harper and Row, New York.
Seven things you should know about cloud computing. (2009, August). Educause, Retrieved August 29, 2011, from the World Wide Web: http://www.educause.edu.
Smarzynska, B. K., (2002) Does foreign direct investment increase the productivity of domestic firms? In search of spillovers through backward linkages, World Bank Policy Research Working Paper 2923.
Snell, S. A., Youndt, M. A., & Wright, M. W. (1996). Establishing a framework for research in strategic human resource management. Research in Personal and Human Resource Management,14, 61-90.
Spence, A. M. (1984). Cost reduction, competition, and Industry performance. Econometrica, 52, 101-121.
Suzuki, K. (1993). R&D spillovers and technology transfer among and within vertical keiretsu groups: evidence from the Japanese electrical machinery industry. International Journal of Industrial Organization, 11, 573-91.
Thoenig, M., & Verdier, T. (2010). A macroeconomic perspective on knowledge management. Journal of Economic Growth, 15(1), 33-63.
Truong, D. (2010). How cloud computing enhances competitive advantages: A research model for small businesses. The Business Review, Cambridg,15(1), 59-65.
Tsai, H. A. (2005). Knowledge Spillovers and High-technology Clustering: Evidence from Taiwan''s Hsinchu Science-based Industrial Park. Contemporary Economic Policy, 23(1), 116-128.
Tsai, K. H., & Wang, J. C. (2004). R&D productivity and the spillover effects of high-tech industry of the traditional manufacturing sector: the case of Taiwan. World Economy, 27(10), 1555-1570.
Werching, K. (2010). Schumpeterian competition, technological regimes and learning through knowledge spillover. Journal of Economic Behavior & Organization, 75(3), 482-493.
Yang, H., Phelps, C., & Steensma, H.K. (2010). Learning from what others have learned from you: The effects of knowledge spillovers on originating firms. Academy of Management Journal, 53(2), 371-389.
Yang, N. R. (2012). Use of data encryption mechanism to protect the security of enterprise information. Retrieved July 5, 2012, from the World Wide Web: http://www.digitimes.com.tw/tw/b2b/Seminar/shwnws_new.asp?CnlID=18&cat=99&product_id=051A10419&id=0000282920_UJW888UU36G8POLWD54DN
Yang, Y. J. (2002). The efficiency of the U.S. high-tech manufacturers Analysis - data envelopment analysis. (Unpublished master’s thesis). Soochow University, Taipei.
Yoo, C. S. (2011). Cloud Computing: Architectural and Policy Implications, Rev Ind Organ, 38, 405-421.
Youndt, M. A., Snell, S. A., Dean, J. W., & Lepak, D. P. (1996). Human resource management, manufacturing strategic and firm performance. Academy of Management Journal, 39(4), 836-866.
Zhong, J. D., Gao T. Z., & Yang, J. X. (2010). Cloud computing and industrial development. EDRC, 34(4), 20-31.
Zhuang, Y. Q., & Xu, B. F. (1999). Research and development contributions and inter-industry spillover effects on productivity: the empirical evident of Taiwan Manufacturing. Taiwan Economic Review, 407-432.
Zou, M. W., & Liu, J. T. (1997). Foreign Direct Investment in Taiwan manufacturing spread to the effect of the empirical. Taiwan Economic Review, 155-181.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top