跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林炫君
研究生(外文):Syuan-Jyun Lin
論文名稱:使用旋轉盤微過濾分離微藻懸浮液
論文名稱(外文):Separation of Microalgae suspension using rotating-disk dynamic microfilter
指導教授:黃國楨黃國楨引用關係
指導教授(外文):Kuo-Jen Hwang
口試委員:莊清榮李篤中鄭東文童國倫
口試日期:2012-07-16
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:旋轉盤微過濾微藻薄膜分離生質柴油
外文關鍵詞:rotating-disk dynamic microfilterMicroalgaemembrane filtrationBiodiesel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以旋轉盤薄膜微過濾進行微藻懸浮液之分離,提升微藻之採收與分離效率。利用旋轉盤造成之高剪切力降低濾餅之生成與過濾分離。以實驗與理論分析並行,探討旋轉盤轉速、進料速度與透膜壓差對過濾濾速、結垢阻力、濾餅性質與微藻粒徑大小之影響。
由實驗結果發現,對微藻粒子之阻擋率可達99.9 %,主要阻力來源為微藻形成之濾餅,而此濾餅具高壓縮性,壓縮係數為0.66。而增加進料速度與旋轉盤轉速,皆可提升膜面剪切力,掃除膜面濾餅與降低濾餅層厚度;故以低透膜壓差與高膜面剪切力之操作條件,即可得到最高的擬穩態濾速。隨著剪切力的上升,膜面殘留粒子之粒徑減小;以傅立葉紅外光譜儀測量濾餅之官能基,發現操作於高剪切力之下的微藻官能基變得較不明顯,證明微藻的胞外聚合物質會脫離粒子表面。
本研究亦利用計算流體力學軟體模擬旋轉盤過濾系統的流場,分析膜面之剪切力,以分析操作條件對濾速之影響。並藉由理論模式之運算,迴歸擬穩態濾速與操作條件之關係式,套入實驗常數與操作條件加以計算,所估算的濾速其相對誤差皆在15 %以內;並找出局部剪切力與擬穩態濾速之間的關係,可用於推估模組放大之穩定濾速。


Dynamic microfiltration with a rotating-disk is used for the separation of microalgae from harvest suspension in this study. The effects of operating conditions, such as disk rotating speed, suspension feed rate, transmembrane pressure on the filtration rate, membrane fouling, cake properties and microalgae rejection, are discussed both experimentally and theoretically. Since the shear stress acting on the membrane surface may be increased by increasing the disk rotating speed, the filter cake is reduced and the filtration rate is increased by using rotating-disk dynamic microfiltration.
A 99.9% microalgae rejection can be achieved in the microfiltration using a 0.1μm mixed cellulose ester membrane. The main source of filtration resistances is the highly compressed filter cake with a compressibility factor of 0.66. The cake mass and thickness decrease with increasing the feed velocity and disk rotating speed. Therefore, increasing the shear stress on the membrane surface by increasing the disk rotating speed or decreasing the transmembrane pressure leads to a higher pseudo-steady filtration rate. In addition, the mean particle size of microalgae on the membrane surface may decrease by increasing the shear force. Measuring the functional groups of the materials in the filter cake using Fourier transform infrared spectroscopy indicates that the original functional groups in microalgae become unobvious under higher shear stresses. This is attributed to the leaving of extracellular polymeric substances from the algae surfaces.
In this study, the flow fields in the rotating-disk dynamic microfilter are simulated by a computational fluid dynamics software, FLUENT. The shear forces on the membrane surface are calculated to understand the effects of operating conditions on the cake formation and filtration rate. According to the theoretical model analysis, the relationships between pseudo-steady filtration rate and operating conditions are established. Substituting the regressed empirical constants and operating conditions into theoretical calculation, the relative deviation of filtration rates between estimated results and experimental data is less than 15%. It can be expected that the relationship between the local shear stress and pseudo-steady filtration rate can be extended to apply in module scale-up.


目 錄
頁次
致謝 I
中文摘要 II
英文摘要 III
目 錄 V
圖目錄 IX
表目錄 XV
第一章 緒 論 1
1-1 薄膜分離技術 1
1-2 微藻產油程序 5
1-3 研究動機與目標 7
第二章 文獻回顧 8
2-1 藻類簡介 8
2-2 微藻之過濾 9
2-3 動態過濾裝置 11
2-3-1 掃流過濾系統 11
2-3-2 旋轉盤過濾系統 13
2-4 可變形粒子之過濾性質 16
第三章 理論 19
3-1 阻力串聯模式 19
3-2 濾餅平均過濾比阻與孔隙度 20
3-3 濾餅的過濾比阻、孔隙度與透膜壓差之關係 21
3-4 壓縮粒子的比表面積 22
3-5 阻擋率(Rejection) 23
3-6 粒子力平衡方程式 24
3-7 平均濾速與濾餅質量之估算 26
3-8 局部濾速與濾餅質量之估算 27
3-9 旋轉盤之動量平衡方程式 28
3-10 CFD之旋轉盤模擬 31
第四章 實驗裝置與方法 34
4-1 旋轉盤過濾實驗裝置 34
4-2 實驗設備與儀器 36
4-2-1 實驗設備 36
4-2-2 分析儀器 37
4-3實驗物料與濾膜 38
4-4 微藻濃度測定步驟 39
4-4-1 微藻濃度之量測 39
4-4-2 微藻數量之量測 40
4-4-3 EPS與SMP之量測 42
4-5 實驗流程 45
4-6 薄膜結垢之分析 47
第五章 實驗結果與討論 48
5-1 旋轉盤過濾特性之濾速分析 48
5-1-1 透膜壓差對濾速之影響 48
5-1-2 旋轉盤轉速對濾速之影響 52
5-1-3操作條件對穩定濾速之影響 56
5-2 旋轉盤過濾之阻力與濾餅性質分析 60
5-2-1 總阻力之分析 60
5-2-2 過濾阻力之分析 63
5-2-3濾餅量與其平均高度之分析 65
5-2-4 濾餅性質之分析 73
5-3粒子大小對過濾之影響 77
5-3-1粒徑分佈量測 77
5-3-2顯微鏡觀察之粒徑分佈 79
5-3-3 SEM之分析 82
5-4 傅氏紅外線吸收光譜儀(ATR-FTIR)之分析 84
5-5 胞外聚合物之分析 86
5-6 CFD模擬旋轉盤之流態 87
5-6-1 系統內部流態分佈 87
5-6-2 膜面剪切力與速度分佈 91
5-7 過濾性能之模擬計算 97
5-7-1操作條件對平均擬穩態濾速之影響 97
5-7-2操作條件對局部擬穩態濾速之影響 101
第六章 結論 106
6-1 旋轉盤過濾特性之濾速分析 106
6-2旋轉盤過濾特性之阻力、濾餅與粒徑之分析 107
6-3 過濾性質之模擬計算 107
符號說明 108
參考文獻 112


圖目錄
第一章
Fig. 1-1 Application range of various membrane processes 4
Fig. 1-2 Procedures for microalgae lipid production 6
第二章
Fig. 2-1 Four stages of cake compression during filtration of soft particles: (A) particle deposition, (B) particle rearrangement, (C) localized deformation, and (D) homogeneous deformation. (Hwang.,2009) 17
第三章
Fig. 3-1 The resistance of microfiltration. 19
Fig. 3-2. Flow diagram of the calculate procedure for dynamic microfiltration. 26
Fig. 3-3. Flow diagram of the calculate procedure for dynamic microfiltration for cylindrical coordinates. 27
Fig. 3-4 The mash of rotating-disk dynamic filtration 32
Fig. 3-5 The side view of standars of rotating-disk dynamic filtration in x-z plane 32
第四章
Fig. 4-1 A schematic diagram of rotating-disk dynamic microfilter system . 35
Fig. 4-2 The side view of Mixed Cellulose Ester membrane by SEM. 38
Fig. 4-3 The microphotograph of Chlorella sp. with 900 times . 40
Fig. 4-4 The calibration curve of Chlorella sp. quantity in UV/Vis Spectrophotometer . 41
Fig. 4-5 The calibration curve of Chlorella sp. concentration in UV/Vis Spectrophotometer . 41
Fig. 4-6 The calibration curve of protein concentration in UV/Vis Spectrophotometer . 44
Fig. 4-7 The calibration curve of glucose concentration in UV/Vis Spectrophotometer . 44
第五章
Fig.5-1 Time courses filtration flux during rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 49
Fig.5-2 Time courses filtration flux during rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 51
Fig.5-3 Time courses filtration flux during rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 51
Fig.5-4 Time courses of filtration flux during rotating-disk dynamic microfiltration of microalgae underΔP=10 kPa and different rotational speeds . 52
Fig.5-5 Time courses of filtration flux during rotating-disk dynamic microfiltration of microalgae underΔP=20 kPa and different rotational speeds .53
Fig.5-6 Time courses of filtration flux during rotating-disk dynamic microfiltration of microalgae underΔP = 60 kPa and different rotation speeds . 55
Fig.5-7 Time courses of filtration flux during rotating-disk dynamic microfiltration of microalgae under ΔP = 100 kPa and different rotation speeds. 55
Fig. 5-8 Filtration pressures courses of pseudo steady state filtration rates in rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 57
Fig. 5-9 Filtration pressures courses of pseudo steady state filtration rates in rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 57
Fig. 5-10 Filtration pressures courses of pseudo steady state filtrationrates in rotating-disk dynamic microfiltration of microalgae under different filtration pressures 58
Fig 5-11 Filtration pressures courses of pseudo steady state filtration rates in rotating-disk dynamic microfiltration of microalgae under different filtration pressures. 59
Fig. 5-12 Filtration resistances in rotating-disk dynamic microfiltration of microalgae under different rotating speed . 61
Fig. 5-13 Filtration resistances in rotating-disk dynamic microfiltration of microalgae under different Rotating speed . 61
Fig. 5-14 Filtration resistances in rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 62
Fig. 5-15 Filtration resistances in rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 64
Fig. 5-16 Filtration resistances in rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 64
Fig. 5-17 Filtration resistances in rotating-disk dynamic microfiltration of microalgae under different filtration pressures . 65
Fig. 5-18 The cake weight in rotating-disk dynamic microfiltration of microalgae under different rotating speed . 66
Fig. 5-19 The cake weight in rotating-disk dynamic microfiltration of microalgae under different shear stress . 68
Fig. 5-20 Comparisons of cake weight between calculated results and
experimental data . 68
Fig. 5-21 The cake height in rotating-disk dynamic microfiltration of microalgae under different rotating speed . 69
Fig. 5-22 The side view of membrane of filtration experiment by SEM.( Q=7x10-6m3/s, ΔP=10kPa, R=0rpm, Mag=10KX, periphery) 71
Fig. 5-23 The side view of membrane of filtration experiment by SEM.(Q=7x10-6m3/s, ΔP=100kPa, R=0rpm, Mag=10KX, periphery) 71
Fig. 5-24 The side view of membrane of filtration experiment by SEM.( Q=7x10-6m3/s, ΔP=100kPa, R=350rpm, Mag=10KX, periphery) 72
Fig. 5-25 The side view of membrane of filtration experiment by SEM.(Q=7x10-6m3/s, ΔP=100kPa, R=350rpm, Mag=10KX, center of a circle) 72
Fig. 5-26 The average porosity in rotating-disk dynamic microfiltration of microalgae under different rotating speed. 73
Fig. 5-27 The average porosity in rotating-disk dynamic microfiltration of microalgae under different rotating speed . 74
Fig. 5-28 The effective specific surface area of the particles after compression in rotating-disk dynamic microfiltration of microalgae under different rotating speed . 75
Fig. 5-29 The side view of membrane of filtration experiment by SEM. (Q=7x10-6m3/s, ΔP=100kPa, R=0rpm, Mag=10KX, center of a circle) 76
Fig. 5-30 The particle size of 0 rpm condition by Laser scattering particle size distribution analyzer. 78
Fig. 5-31 The particle size of 500 rpm condition by Laser scattering particle size distribution analyzer . 79
Fig. 5-35 After filtration cake under membrane with the aid of a microscope.(R=500rpm,Mag=3.6KX) 81
Fig. 5-36 The facade view of membrane of filtration experiment by SEM. (Q=7x10-6m3/s, ΔP=100kPa, R=0rpm, Mag=5KX) 83
Fig. 5-37 The side view of membrane of filtration experiment by SEM. (Q=7x10-6m3/s, ΔP=100kPa, R=350rpm, Mag=5KX) 83
Fig. 5-38 The FTIR analysis of virgin membrane and membrane surface after filtration experiment. 84
Fig. 5-39 The velocity vectors by Velocity Magnitude under rotation speed 500rpm and inlet velocity 0.047m/s.(SI unit) 90
Fig. 5-40 The velocity vectors by Wall Shear Stress (Pa) . 92
Fig. 5-41 The membrane surface after filtered . 93
Fig. 5-42 The shear stress of membrane surface on x = 0 m . 95
Fig. 5-43 The velocity magnitude of membrane surface on (x = 0 m, z=1×10-6 m) 96
Fig. 5-44 The velocity distribution of membrane surface on (x = 0 m, z=1×10-6 m) 96
Fig. 5-45 The cake height in rotating-disk dynamic microfiltration of microalgae by calculate . 98
Fig. 5-46 The cake height in rotating-disk dynamic microfiltration of microalgae under different shear rate . 99
Fig. 5-47 The pseudo steady state filtration rates in rotating-disk dynamic microfiltration of microalgae under operate condition . 100
Fig. 5-48 The Lc,sem in rotating-disk dynamic microfiltration of microalgae under different shear stress . 101
Fig. 5-49 Compare mean Lc,sem with mean Lc,exp. 102
Fig. 5-50 Relationship between pseudo steady state filtration rates, cake weigh and local shear stress. 103
Fig. 5-51 The cake weight in rotating-disk dynamic microfiltration of microalgae under flux different rotating speed . 104
Fig. 5-52 The cake weight and shear stress of membrane surface on
(x = 0 m, z = 1 × 10-6 m) . 105


表目錄
Table 1-1 Compare dead-end filtration with cross-flow filtration. 3
Table 3-1 The simulation standards in the Gambit 2.4 . 33
Table 4-1 The operating conditions used in this study . 35
Table 5-1 The compare of SMP and EPS . 86
Table 5-2 The compare of simulation and theory velocity magnitude . 88
Table 5-3 The parameters calculated in this study.(SI system) 97


Abbasi, M., A. Salahi, M. Mirfendereski, T. Mohammadi, A. Pak; “Dimensional analysis of permeation flux for microfiltration of oily wastewaters using mullite ceramic membranes,” Desalination, 252, 113–119 (2010).
Bouzerar, R., L. Ding, M. Y. Jaffrin,; “Local permeate flux–shear–pressure relationships in a rotating disk microfiltration module: implications for global performance, “Journal Membrane Science, 170, 127–141 (2000).
Babel , S. and S. Takizawa,; “Chemical pretreatment for reduction of membrane fouling caused by algae,“ Desalination, 274, 171–176 (2011).
Castaing, J.B., A. Masse, V. Sechet, N.-E. Sabiri, M. Pontie, J. Haure, P. Jaouen,; “Immersed hollow fibres microfiltration (MF) for removing undesirable micro-algae and protecting semi-closed aquaculture basins,“ Desalination, 276, 386–396 (2011).
Christensen, M. L., T. B. Nielsen, M. B. O. Andersen, K. Keiding,; “Effect of water-swollen organic materials on crossflow filtration performance,” Journal Membrane Science., 333, 94-99 (2009).
Chiou, Y.-T., M.-L. Hsieh, H.-H. Yeh,; “Effect of algal extracellular polymer substances on UF membrane fouling,“ Desalination, 250 ,648–652(2010).

Frappart, M., A. Masse, M. Y. Jaffrin, J. Pruvost, P. Jaouen,; “Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation,“ Desalination, 265, 279–283(2011).
Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics; Prentice Hall: Englewood Cliffs, NJ, 1965; Chaps. 6–8.
Hwang, K.J. and C.-E. Hsu,; “Effect of gas–liquid flow pattern on air-sparged cross-flow microfiltration of yeast suspension,” Chemical Engineering Journal, 151, 160–167 (2009).
Hwang, K.J. and P.-S. Huang,; “Cross-flow microfiltration of dilute macromolecular suspension,; ” Separation and Purification Technology, 68,328–334. (2009)
Hwang, K.J., Y.-T. Wanga, E. Iritani, N. Katagiri,; “Effects of porous gel particle compression properties on microfiltration characteristics,” Journal Membrane Science, 341, 286-293 (2009).
Hwang, K.J. and K.-P. Lin,; “Cross-flow microfiltration of dual-sized submicron particles,” Separation and Purification Technology, 37, 2231-2249 (2002).
Hung, M.T. and J.C. Liu,; “Microfiltration for separation of green algae from water,“ Colloids and Surfaces B: Biointerfaces, 51,157–164 (2006)
Liebermann, F.,; “Dynamic cross flow filtration with Novoflow''s single shaft disk filters,” Desalination, 250, 1087–1090 (2010).
Li, L., L. Dinga, Z. Tua, Y. Wan, D. Clausse, J.-L. Lanoiselle,; “Recovery of linseed oil dispersed within an oil-in-water emulsion using hydrophilic membrane by rotating disk filtration system,“ Journal Membrane Science, 342, 70–79 (2009).
Lu, W.M.; Ju, S.C.,; “Selective Particle Deposition in Cross-Flow Filtration. ,” Separation Science and Technology, 24, 517–540. (1989).
Rios, S., D., E. Clavero, J. Salvado, X. Farriol, C. Torras,; “Dynamic Microfiltration in Microalgae Harvesting for Biodiesel Production,” Industrial & Engineering Chemistry Research, 50, 2455–2460 (2011).
Sheu, M.-K.,; “The Planktonic algae of freshwater in Taiwan(I)-Introduction and Chlorophyceae (1),“ 台灣國立博物館, (1999).(Taiwan)
Sherwood, J.D,; “The force on a sphere pulled away from a permeable half-space.),“ Physicochem. Hydrodyn, 10, 3–12. (1988)
Shah, T. N., Y. Yoon, C. L. Pederson, R. M. Lueptow,; “Rotating reverse osmosis and spiral wound reverse osmosis filtration: A comparison,“ Journal Membrane Science, 285, 353–361 (2006).
Sim, L. N., Y. Ye, V. Chen, A. G. Fane,; “Comparison of MFI-UF constant pressure, MFI-UF constant flux and Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFIUF), “ Water Research, 45,1639-1650(2011).
Tsui, Y.-Y. and Y.-C. Hu,; “Flow characteristics in mixers agitated by helical ribbon blade impeller.; ,“ Engineering Applications of Computational Fluid Mechanics, Vol.5, No. 3, 416-429(2011).
Jaffrin, M. Y., L.-H. Ding, O. Akoum, A. Brou, “A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems,” Journal Membrane Science, 242, 155–167 (2004).
Jaffrin, M. Y.,; “Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems“ Journal Membrane Science, 324, 7–25 (2008).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊