|
1.Lin, W.H., Hung, C.H., Hsu, C.I. & Lin, J.Y. Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem 272, 20044-20048 (1997).
2.van der Hem, L.G., van der Vliet, J.A., Kino, K., Hoitsma, A.J. & Tax, W.J. Ling-Zhi-8: a fungal protein with immunomodulatory effects. Transplant Proc 28, 958-959 (1996).
3.Tanaka, S., et al. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J Biol Chem 264, 16372-16377 (1989).
4.Hsu, H.Y., et al. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. J Cell Physiol 215, 15-26 (2008).
5.Lin, Y.L., et al. An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and MAPK pathways. J Leukoc Biol 86, 877-889 (2009).
6.Yeh, C.H., Chen, H.C., Yang, J.J., Chuang, W.I. & Sheu, F. Polysaccharides PS-G and protein LZ-8 from Reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and T lymphocytes. J Agric Food Chem 58, 8535-8544 (2010).
7.Haak-Frendscho, M., Kino, K., Sone, T. & Jardieu, P. Ling Zhi-8: a novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol 150, 101-113 (1993).
8.Miyasaka, N., et al. An immunomodulatory protein, Ling Zhi-8, facilitates cellular interaction through modulation of adhesion molecules. Biochem Biophys Res Commun 186, 385-390 (1992).
9.van der Hem, L.G., et al. Ling Zhi-8: studies of a new immunomodulating agent. Transplantation 60, 438-443 (1995).
10.Kino, K., et al. An immunomodulating protein, Ling Zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice. Diabetologia 33, 713-718 (1990).
11.Wu, C.T., et al. Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis 32, 1890-1896 (2011).
12.Lin, C.C., et al. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol Immunother 60, 1019-1027 (2011).
13.Chu, C.L., Chen Dz, C. & Lin, C.C. A novel adjuvant Ling Zhi-8 for cancer DNA vaccines. Human vaccines 7, 1161-1164 (2011).
14.Shaw, T.J. & Martin, P. Wound repair at a glance. J Cell Sci 122, 3209-3213 (2009).
15.Nurden, A.T., Nurden, P., Sanchez, M., Andia, I. & Anitua, E. Platelets and wound healing. Front Biosci 13, 3532-3548 (2008).
16.Speyer, C.L. & Ward, P.A. Role of endothelial chemokines and their receptors during inflammation. J Invest Surg 24, 18-27 (2011).
17.Wigglesworth, K.M., et al. Rapid recruitment and activation of macrophages by anti-Gal/alpha-Gal liposome interaction accelerates wound healing. J Immunol 186, 4422-4432 (2011).
18.Rodero, M.P. & Khosrotehrani, K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol 3, 643-653 (2010). 19.Gilliver, S.C., Emmerson, E., Bernhagen, J. & Hardman, M.J. MIF: a key player in cutaneous biology and wound healing. Exp Dermatol 20, 1-6 (2011).
20.McFarland-Mancini, M.M., et al. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J Immunol 184, 7219-7228 (2010).
21.Maeda, S., et al. Inducible Costimulator (ICOS) and ICOS Ligand Signaling Has Pivotal Roles in Skin Wound Healing via Cytokine Production. Am J Pathol (2011).
22.Heo, S.C., et al. Tumor necrosis factor-alpha-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Invest Dermatol 131, 1559-1567 (2011).
23.Shinozaki, M., Okada, Y., Kitano, A., Ikeda, K. & Saika, S. Impaired cutaneous wound healing with excess granulation tissue formation in TNFalpha-null mice. Arch Dermatol Res 301, 531-537 (2009).
24.Zhan, S. & Rockey, D.C. Tumor necrosis factor alpha stimulates endothelin-1 synthesis in rat hepatic stellate cells in hepatic wound healing through a novel IKK/JNK pathway. Exp Cell Res 317, 1040-1048 (2011).
25.Martin, P. Wound healing--aiming for perfect skin regeneration. Science 276, 75-81 (1997).
26.Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H. & Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen 16, 585-601 (2008).
27.Eaglstein, W.H., Iriondo, M. & Laszlo, K. A composite skin substitute (graftskin) for surgical wounds. A clinical experience. Dermatol Surg 21, 839-843 (1995).
28.Falanga, V., et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol 134, 293-300 (1998).
29.Park, J.E. & Barbul, A. Understanding the role of immune regulation in wound healing. Am J Surg 187, 11S-16S (2004).
30.Theilgaard-Monch, K., Knudsen, S., Follin, P. & Borregaard, N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J Immunol 172, 7684-7693 (2004).
31.Canturk, N.Z., et al. The relationship between neutrophils and incisional wound healing. Skin Pharmacol Appl Skin Physiol 14, 108-116 (2001).
32.Dovi, J.V., He, L.K. & DiPietro, L.A. Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol 73, 448-455 (2003).
33.Dovi, J.V., Szpaderska, A.M. & DiPietro, L.A. Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost 92, 275-280 (2004).
34.Trump, B.F., et al. Cell calcium, cell injury and cell death. Environ Health Perspect 57, 281-287 (1984).
35.Resing, K.A., al-Alawi, N., Blomquist, C., Fleckman, P. & Dale, B.A. Independent regulation of two cytoplasmic processing stages of the intermediate filament-associated protein filaggrin and role of Ca2+ in the second stage. J Biol Chem 268, 25139-25145 (1993).
36.Grzesiak, J.J. & Pierschbacher, M.D. Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J Clin Invest 95, 227-233 (1995).
37.Thiel, V. & Sjovall, P. Using time-of-flight secondary ion mass spectrometry to study biomarkers. Vol. 39 125-156 (2011).
38.Yeh, C.M., Yeh, C.K., Hsu, X.Y., Luo, Q.M. & Lin, M.Y. Extracellular expression of a functional recombinant Ganoderma lucidium immunomodulatory protein by Bacillus subtilis and Lactococcus lactis. Appl Environ Microbiol 74, 1039-1049 (2008).
39.Lin, Q., et al. Impaired wound healing with defective expression of chemokines and recruitment of myeloid cells in TLR3-deficient mice. J Immunol 186, 3710-3717 (2011).
40.Larson, K., Ho, H.H., Anumolu, P.L. & Chen, T.M. Hematoxylin and eosin tissue stain in Mohs micrographic surgery: a review. Dermatol Surg 37, 1089-1099 (2011).
41.Wachtel-Galor, S., Yuen, J., Buswell, J.A. & Benzie, I.F.F. Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. in Herbal Medicine: Biomolecular and Clinical Aspects (eds. Benzie, I.F.F. & Wachtel-Galor, S.) (Boca Raton (FL), 2011).
42.Wang, J., et al. Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol 226, 1265-1273 (2011).
43.Sato, T., Yamamoto, M., Shimosato, T. & Klinman, D.M. Accelerated wound healing mediated by activation of Toll-like receptor 9. Wound Repair Regen 18, 586-593 (2010).
44.Maharjan, A.S., Pilling, D. & Gomer, R.H. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation. Fibrogenesis Tissue Repair 3, 23 (2010).
45.Jagavelu, K., et al. Endothelial cell toll-like receptor 4 regulates fibrosis-associated angiogenesis in the liver. Hepatology 52, 590-601 (2010).
46.Straino, S., et al. High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J Invest Dermatol 128, 1545-1553 (2008).
47.Ohgoda, O., et al. Fibroblast-migration in a wound model of ascorbic acid-supplemented three-dimensional culture system: the effects of cytokines and malotilate, a new wound healing stimulant, on cell-migration. J Dermatol Sci 17, 123-131 (1998).
|