跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林吟璟
研究生(外文):Yin-Ching Lin
論文名稱:在乳癌中PPM1F (protein phosphatase, Mg2+/ Mn2+ dependent, 1F) 所扮演的致癌角色
論文名稱(外文):The Oncogenic Role of PPM1F (protein phosphatase, Mg2+ / Mn2+ dependent, 1F) in Breast Cancer Developmant
指導教授:呂思潔呂思潔引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:124
中文關鍵詞:乳癌吸菸
外文關鍵詞:breast cancerPPM1Fp53
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要............................................................................................................I
英文摘要.........................................................................................................III
目錄..................................................................................................................IV
第一章 緒論 (Introduction)…..………………………………….……….1
背景………………………………………………………….…..............2
第二章 材料與實驗方法………………………………….………………..9
第一節 材料…………………………………………….……………...10
一、藥品試劑 ………………………………………………………10
二、常用儀器 ……………………………………………….………15
三、常用溶液 ………………………………….…….……..………17
第二節 實驗方法...…………………………….………………………19
一、細胞培養(cell culture) ……………………………….……….20
二、RNA萃取...................................................................................21
三、反轉錄 (Reverse Transcription) ..............................................21
四、聚合酶連鎖反應 (Polymerase chain reaction,PCR)...........21
五、即時聚合酶鏈鎖反應(Real-time PCR) ....................................22
六、免疫組織染色 (Immuo-histochemistry Staining,IHC) ......23
七、免疫螢光染色(Immuno-flurorescent Stain,IF) ..................24
八、細胞蛋白溶解物(cell lysate)的萃取............................................25
九、蛋白質定量..................................................................................25
十、蛋白質電泳凝膠(SDS-PAGE)的配製.........................................26
十一、SDS-PAGE蛋白質膠體電泳...................................................26
十二、西方墨點法 (Western blotting assay) ...................................27
十三、尼古丁低濃度血清培養..........................................................28
十四、small interfering RNA (si-RNA)技術....................................28
十五、CMV promoter基因放大技術................................................29
十六、Promoter Luciferase Assay...................................................30
十七、接合反應(ligation)及菌種轉型(Transformation) ...............31
十八、選養轉型成功的菌落並製備質體.........................................31
十九、菌種保存、限制酶切割確認及定序......................................32
二十、抽大量質體及轉染 (Transfection) ......................................32
二十一、細胞存活率測定 (MTT cell viability assay) ...................33
二十二、免疫沉澱法(Immuno-precipitation, IP) ..........................33
二十三、以組織研磨器分離細胞核、細胞質及粒線體..................35
二十四、統計分析方法......................................................................37
第三章 實驗結果(Result)...……………………………………….………38
第一節 人類乳癌細胞株及正常乳房上皮細胞株中PPM1F蛋白表現型態.....................................................................................................39
第二節 人類乳癌細胞株的PPM1F蛋白表現型態,以及乳癌細胞株中荷爾蒙受體與生長因子接受器的表現情形................................39
第三節 台灣乳癌病人腫瘤組織及正常乳房組織中PPM1F基因mRNA表現型態................................................................................40
第四節 以Real-time PCR比較台灣乳癌病患其腫瘤組織及正常乳房組織中PPM1F基因mRNA的表現程度........................................41
第五節 以統計軟體分析台灣乳癌病患其腫瘤組織及正常乳房組織中PPM1F基因mRNA的表現程度與臨床病理因子(clinical pathology factor)之間的關係...........................................................42
第六節 台灣乳癌病患腫瘤組織中PPM1F基因mRNA表現程度不論在絕對表現量或相對倍數皆高於正常乳房組織中的表現........................................................................................................43
第七節 台灣乳癌病患檢體中,腫瘤大小越大其PPM1F基因mRNA表現量越高........................................................................................44
第八節 台灣乳癌病患癌症期別越後期者其PPM1F的mRNA表現量越高…………………………………………………………………45
第九節 PPM1F mRNA表現量越高對於乳癌病患術預後存活越不利........................................................................................................45
第十節 暴露於尼古丁(Nicotine)環境中會促使PPM1F 基因mRNA表現量上升........................................................................................46
第十一節 在乳癌組織切片中PPM1F蛋白的表現形態...................47
第十二節 利用Si-RNA (small interfering RNA)抑制人類乳癌細胞株中的PPM1F.....................................................................................48
第十三節 抑制乳癌細胞MDA-MB-231中PPM1F的表現量並觀察其生長速率...........................................................................................48
第十四節 在低血清濃度環境培養下加入尼古丁(Nicotine)會促使PPM1F 基因mRNA及蛋白表現量上升......................................49
第十五節 尼古丁(Nicotine)的刺激會促進PPM1F基因啟動子(promoter)的活化...........................................................................51
第十六節 PPM1F蛋白在人類乳癌細胞株及正常乳房上皮細胞株中分布情形不同.................................................................................53
第十七節 分離乳癌細胞的細胞核、粒線體以及細胞質並觀察PPM1F表現情形.........................................................................................54
第十八節 乳癌細胞株中PPM1F蛋白表現的分布情形會因受到尼古丁刺激而改變.................................................................................55
第二十節 將暴露於尼古丁環境的乳癌細胞細胞核、粒線體以及細胞質分離並觀察PPM1F蛋白表現情形.............................................56
第二十一節 使乳癌細胞株中PPM1F蛋白過度表現並觀察乳癌細胞生長速率............................................................................................56
第四章 討論(Discussion)..............................................................................61
第五章 圖表(Tables and Figures)...............................................................68
第六章、參考資料(Reference)....................................................................97
第七章、附錄(appendix)............................................................................102


1.Ramaiah, M.J., et al., Chalcone-imidazolone conjugates induce apoptosis through DNA damage pathway by affecting telomeres. Cancer Cell Int, 2011. 11
2.Kelsey, J.L. and G.S. Berkowitz, Breast cancer epidemiology. Cancer Res, 1988. 48(20)
3.Poola, I., et al., Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med, 2005. 11(5)
4.Leinung, S., L.C. Horn, and J. Backe, [Male breast cancer: history, epidemiology, genetic and histopathology]. Zentralbl Chir, 2007. 132(5)
5.Chopra, I. and K.M. Kamal, A systematic review of quality of life instruments in long-term breast cancer survivors. Health Qual Life Outcomes, 2012. 10
6.Lavasani, M.A. and F. Moinfar, Molecular classification of breast carcinomas with particular emphasis on "basal-like" carcinoma: A critical review. J Biophotonics, 2012. 5(4)
7.Schreiber, J.A. and D.Y. Brockopp, Twenty-five years later--what do we know about religion/spirituality and psychological well-being among breast cancer survivors? A systematic review. J Cancer Surviv, 2012. 6(1)
8.Albanell, J., et al., Prospective transGEICAM study of the impact of the 21-gene Recurrence Score assay and traditional clinicopathological factors on adjuvant clinical decision making in women with estrogen receptor-positive (ER+) node-negative breast cancer. Ann Oncol, 2012. 23(3)
9.Lee, J.S., et al., Factors influencing the outcome of breast cancer patients with 10 or more metastasized axillary lymph nodes. Int J Clin Oncol, 2011. 16(5)
10.Guix, B., et al., Exeresis and brachytherapy as salvage treatment for local recurrence after conservative treatment for breast cancer: results of a ten-year pilot study. Int J Radiat Oncol Biol Phys, 2010. 78(3)
11.Susila, A., et al., The POPX2 phosphatase regulates cancer cell motility and invasiveness. Cell Cycle, 2010. 9(1)
12.Koh, C.G., et al., The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr Biol, 2002. 12(4)
13.Harvey, B.P., S.S. Banga, and H.L. Ozer, Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts. J Biol Chem, 2004. 279(23)
14.Das, A.K., et al., Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J, 1996. 15(24)
15.Voss, M., et al., Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cell Signal, 2011. 23(1)
16.Lammers, T. and S. Lavi, Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Crit Rev Biochem Mol Biol, 2007. 42(6)
17.Inoki, K., J. Kim, and K.L. Guan, AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol, 2012. 52
18.Vakana, E., J.K. Altman, and L.C. Platanias, Targeting AMPK in the treatment of malignancies. J Cell Biochem, 2012. 113(2)
19.Herrero-Martin, G., et al., TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J, 2009. 28(6)
20.Xie, Z., C. He, and M.H. Zou, AMP-activated protein kinase modulates cardiac autophagy in diabetic cardiomyopathy. Autophagy, 2011. 7(10)
21.Missy, K., et al., AlphaPIX Rho GTPase guanine nucleotide exchange factor regulates lymphocyte functions and antigen receptor signaling. Mol Cell Biol, 2008. 28(11)
22.Johnson, K. and S.R. D''Mello, p21-Activated kinase-1 is necessary for depolarization-mediated neuronal survival. J Neurosci Res, 2005. 79(6): p. 809-15.
23.Kichina, J.V., et al., PAK1 as a therapeutic target. Expert Opin Ther Targets, 2010. 14(7)
24.Xie, Y., et al., Functional interactions between phosphatase POPX2 and mDia modulate RhoA pathways. J Cell Sci, 2008. 121(Pt 4)
25.Singh, P., et al., Investigation of POPX2 phosphatase functions by comparative phosphoproteomic analysis. Proteomics, 2011. 11(14)
26.Lyng, M.B., et al., Identification of genes for normalization of real-time RT-PCR data in breast carcinomas. BMC Cancer, 2008. 8
27.Gaffney, E.V., A cell line (HBL-100) established from human breast milk. Cell Tissue Res, 1982. 227(3)
28.Pussinen, P.J., et al., The human breast carcinoma cell line HBL-100 acquires exogenous cholesterol from high-density lipoprotein via CLA-1 (CD-36 and LIMPII analogous 1)-mediated selective cholesteryl ester uptake. Biochem J, 2000. 349(Pt 2)
29.Wu, S., et al., Effects of bisphenol A on the proliferation and cell cycle of HBL-100 cells. Food Chem Toxicol, 2012.
30.Chang, C., S.N. Chow, and Y. Hu, Age of menopause of Chinese women in Taiwan. Int J Gynaecol Obstet, 1995. 49(2)
31.Lee, C.H., et al., Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces alpha9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res Treat, 2011. 129(2)
32.Lee, C.H., et al., Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst, 2010. 102(17)
33.Wu, C.H., C.H. Lee, and Y.S. Ho, Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy. Clin Cancer Res, 2011. 17(11)
34.Rolnick, S.J., et al., Early- and late-stage breast cancer in a managed care setting in relation to mammography screening. Cancer Detect Prev, 1998. 22(6)
35.Zhao, D., et al., Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Neoplasia, 2003. 5(4)
36.Madoux, F., et al., Modulators of STAT Transcription Factors for the Targeted Therapy of Cancer (STAT3 Inhibitors), in Probe Reports from the NIH Molecular Libraries Program2010: Bethesda (MD).
37.Kumar, S., et al., p53 in breast cancer: mutation and countermeasures. Front Biosci, 2007. 12
38.Khan, M.S., H. Devaraj, and N. Devaraj, Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats. Toxicol Appl Pharmacol, 2011. 251(1)
39.Ricca, A., et al., relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells. Br J Cancer, 2001. 85(12)
40.Kaltschmidt, B., et al., The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem, 2000. 267(12)
41.Aleyasin, H., et al., Nuclear factor-(kappa)B modulates the p53 response in neurons exposed to DNA damage. J Neurosci, 2004. 24(12)
42.Dajee, M., et al., NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature, 2003. 421(6923)
43.van Hogerlinden, M., et al., Characterization of the progressive skin disease and inflammatory cell infiltrate in mice with inhibited NF-kappaB signaling. J Invest Dermatol, 2004. 123(1)
44.Jones, R.L., et al., Nuclear NF-kappaB/p65 expression and response to neoadjuvant chemotherapy in breast cancer. J Clin Pathol, 2011. 64(2)
45.Sullivan, J.C., et al., Rel homology domain-containing transcription factors in the cnidarian Nematostella vectensis. Dev Genes Evol, 2007. 217(1)
46.Duckett, C.S., et al., Dimerization of NF-KB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an I kappa B-alpha (MAD-3). Mol Cell Biol, 1993. 13(3)
47.Dreyfus, D.H., et al., Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. BMC Immunol, 2005. 6
48.Zhong, H., et al., The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell, 1997. 89(3)
49.Wang, D. and A.S. Baldwin, Jr., Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J Biol Chem, 1998. 273(45)
50.Sakurai, H., et al., IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem, 1999. 274(43)
51.Vurusaner, B., G. Poli, and H. Basaga, Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med, 2012. 52(1)
52.Courtois, S., C. Caron de Fromentel, and P. Hainaut, p53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene, 2004. 23(3)
53.Fields, S. and S.K. Jang, Presence of a potent transcription activating sequence in the p53 protein. Science, 1990. 249(4972)
54.Saito, A., et al., Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin-proteasome system during reperfusion after stroke: role of oxidative stress. J Cereb Blood Flow Metab, 2005. 25(2)
55.Sui, X., et al., p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy, 2011. 7(6)
56.Thomas, A., T. Giesler, and E. White, p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene, 2000. 19(46)
57.Zhou, L., et al., Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol, 2010. 21(1)
58.Salem, S.D., et al., Involvement of p53 in gemcitabine mediated cytotoxicity and radiosensitivity in breast cancer cell lines. Gene, 2012. 498(2)
59.Neve, R.M., et al., A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 2006. 10(6)
60.Schneider, G., et al., Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene, 2010. 29(19)
61.Management of early cancer of the breast. Report on an international multicentre trial supported by the Cancer Research Campaign. Br Med J, 1976. 1(6017)




電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top