跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承勳
研究生(外文):Cheng-Hsun Tsai
論文名稱:利用有機薄膜/金膜結構增加靈敏度的雙層膜光纖式表面電漿共振感測器
論文名稱(外文):Sensitivity enhancement of surface plasmon resonance (SPR) fiber sensor using a double-layer of organic-thin-film/Au structure
指導教授:蔡五湖
指導教授(外文):Woo-Hu Tsai
口試委員:蔡五湖
口試日期:2012-07-18
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:有機薄膜表面電漿共振光纖感測器
外文關鍵詞:fiber sensorsurface plasmon resonanceorganic thin film
相關次數:
  • 被引用被引用:2
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面電漿共振(SPR)技術目前被廣泛應用在生醫及化學感測上。傳統的表面電漿共振感測器是製做在稜鏡上。現在則將表面電漿感測器製做於光纖上。光纖具有體積小、質量輕、成本低及可彎曲性等優點,光纖式SPR感測器有與傳統的SPR感測器相當的靈敏度,因此應用範圍更為廣泛。
在本論文中,我們採用纖核直徑62.5μm的多模光纖,並使用研磨機將光纖側邊研磨拋光,再利用濺鍍機鍍上50 nm金膜完成SPR光纖感測器的基本結構,之後將不同濃度的乙酸丁酯溶液利用旋轉塗佈在金膜上,再將其放入烘箱以80℃和90分鐘烘烤的方式在感測器上形成一層有機薄膜,最後使用光頻譜分析儀觀察感測器對不同濃度的甜蜜素 (環己基氨基磺酸鈉)水溶液之SPR感測變化。
由本實驗結果得知,使用2.3 wt%乙酸丁酯溶液塗佈形成的薄膜(厚度113.57 nm)在感測器上有最佳的量測效果。共振吸收的光譜變化的靈敏度也可從11.646(nm/M)提昇到32.884(nm/M)。故有機薄膜/金膜的光纖式雙薄膜SPR感測器比單一金膜的傳統SPR感測器有更高的靈敏度,製程上也比濺鍍無機氧化物的SPR感測器節省時間及成本。
The technique of surface plasmon resonance (SPR)has applied widely to the biological and chemical sensing. The traditional surface plasmon resonance sensor was made based on the prism structure. Recently, the SPR fiber sensors based on fiber structure have been reported in the literatures. The advantages of the SPR fiber sensors including small volume, light weight, low cost, and flexibility have also been demonstrated. The SPR fiber sensor has the same sensitivity compared with the traditional SPR sensor, so it can be used more widely.
The multi-mode fiber which has core diameter of 62.5μm has been applied in my experiments. We polished one side of the fiber down to core center and deposited a 50 nm thickness of Au thin film on the fiber side-polished surface. After we had deposited the Au film, we also coated different thickness of butyl acetate thin films on Au surface, then we baked the fiber in the oven at temperature of 80 ℃ for 90 minutes in order to remove the organic solvent. We finally applied the SPR sensors we proposed, to measure the concentration of sodium cyclamate solutions and analyze the SPR resonance absorption responses in the optical spectrum observed by the optical spectrum analyzer.
The experimental results show that the SPR fiber sensor with the film thickness of 113.57 nm fabricated by 2.3 wt% butyl acetate solution exhibits the best performance in the SPR measurements. The sensitivity was improved from 11.646 nm/M to 32.884 nm/M in the low concentration SPR measurements of sodium cyclamate solutions. The sensitivity of organic-thin-film/Au two-layer structure of the SPR fiber sensor we proposed is better than the traditional Au SPR sensor with easy fabrication and lower cost facilities compared to other two-layer structures with oxide/Au structure by sputtering method.
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 xi

第一章 緒論 1
1-1生物感測器 1
1-2光纖生物感測器 2
1-3表面電漿共振感測器 4
1-4研究動機與目的 5
第二章 理論與分析 8
2-1表面電漿波 8
2-2漸逝波 12
2-3表面電漿共振 14
2-4側磨光纖 15
2-5靈敏度定義 17

第三章 實驗製程與量測 19
3-1側磨光纖 19
3-2濺鍍金膜 23
3-3塗佈有機薄膜 25
3-4量測 27
3-4-1光頻譜分析儀 27
3-4-2原子力顯微鏡 30
3-4-3橢圓偏光儀 33
第四章 結果與討論 35
4-1導論 35
4-2塗佈不同厚度乙酸丁酯薄膜分析 35
4-3AFM探討乙酸丁酯薄膜 45
4-4甜蜜素量測 51
第五章 結論與未來展望 55
第六章 參考文獻 57

圖目錄
圖1-1 早期的SPR架構 4
圖1-2 甜蜜素之化學結構 7
圖2-1電荷密度受到激發在金屬層及介電層之間發生振盪 8
圖 2-2 光反射示意圖 12
圖2-3 漸逝波原理 13
圖 2-4 表面電漿共振的基本架構 14
圖2-5 外界折射率跟光損失關係 17
圖2-6 波長振盪響應和反射光強度的關係 18
圖 3-1 實驗流程圖 19
圖 3-2 將光纖置於矽基板上 20
圖 3-3 研磨機 .21
圖 3-4 側磨光纖示意圖 22
圖 3-5 光纖拋光完成後在光學顯微鏡下觀察圖 22
圖 3-6 直流DC濺鍍機系統 24
圖 3-7 鍍上金膜的光纖感測器 24
圖3-8 旋轉塗佈機 26
圖3-9 烘箱 26
圖3-10 鹵素燈光源 28
圖3-11 光頻譜分析儀 28
圖3-12 只鍍金膜的表面電漿共振感測器對不同待測物的光頻譜變化 29
圖3-13 只鍍金膜的表面電漿共振感測器對不同待測物的波長響應曲線 29
圖3-14原子力顯微鏡探針與樣品間作用力與距離關係 31
圖3-15原子力顯徵鏡基本架構 31
圖3-16 金膜表面三維空間影像 32
圖3-17 金膜表面二維空間影像及粗糙度 32
圖3-18 橢圓偏光儀架構示意圖 33
圖3-19 乙酸丁酯濃度與厚度關係圖 34
圖4-1用3.3 % 乙酸丁酯塗佈後光譜頻圖 37
圖4-2 用3.3 % 乙酸丁酯塗佈後共振強度曲線圖 37
圖4-3用3.9 % 乙酸丁酯塗佈後光譜頻圖 38
圖4-4 用3.9 % 乙酸丁酯塗佈後共振強度曲線圖 38
圖4-5用4.5 % 乙酸丁酯塗佈後光譜頻圖 39
圖4-6 用4.5 % 乙酸丁酯塗佈後共振強度曲線圖 39
圖4-7用5.1 % 乙酸丁酯塗佈後光譜頻圖 40
圖4-8 用5.1 % 乙酸丁酯塗佈後共振強度曲線圖 40
圖4-9 塗佈不同濃度乙酸丁酯對dip位移變化量的關係圖 41
圖4-10 手持式折射率計 41
圖4-11 NaCl濃度對折射率關係圖 42
圖4-12 只鍍金膜的感測器對不同NaCl溶液的量測 43
圖4-13 只鍍金膜的濃度對共振波長及共振強度關係圖 43
圖4-14塗佈4.5 % 乙酸丁酯薄膜的感測器對不同NaCl溶液的量測 44
圖4-15塗佈4.5 % 乙酸丁酯薄膜濃度對共振波長及共振強度關係圖 44
圖4-16 用3.3 % 乙酸丁酯塗佈之AFM量測3D圖 46
圖4-17 用3.3 % 乙酸丁酯塗佈之AFM量測2D圖 46
圖4-18 用3.9 % 乙酸丁酯塗佈之AFM量測3D圖 47
圖4-19 用3.9 % 乙酸丁酯塗佈之AFM量測2D圖 47
圖4-20 用4.5 % 乙酸丁酯塗佈之AFM量測3D圖 48
圖4-21 用4.5 % 乙酸丁酯塗佈之AFM量測2D圖 48
圖4-22 用5.1 % 乙酸丁酯塗佈之AFM量測3D圖 49
圖4-23 用5.1 % 乙酸丁酯塗佈之AFM量測2D圖 49
圖4-24 不同濃度乙酸丁酯對粗糙度的關係 50
圖4-25 甜蜜素濃度與折射率的關係 51
圖4-26 只鍍金膜的感測器對甜蜜素的量測 52
圖4-27 塗佈4.5% 乙酸丁酯薄膜的感測器對甜蜜素的量測 52
圖4-28 金膜感測器之濃度對共振波長與共振強度關係圖 53
圖4-29 塗佈4.5% 乙酸丁酯薄膜之濃度對共振波長與共振強度關係圖 53

[1] 吳宗正,生物感測器,生物技術,九州出版社,第十八章,
pp.24~262,1996
[2] 張怡南,生物感測器,生物技術的發展與應用,九州出版社,三版,pp303~320,2000
[3] 吳曜東,光纖原理與應用,全華科技股份有限公司,2001
[4] 謝振傑,光纖生物感測器,物理雙月刊,廿八卷四期,
pp.704~710,2006
[5] R. W. Wood, ‘On a remarkable care of uneven distributiom of light in a diffraction grating spectrum’, Philos. Mag. 4, pp. 396-402, 1902.
[6] E. Kretschmann and H. Raether, ‘Radiative decay of non-radiative surface plasmons excited by light’, Z. Naturforsch. 23a, pp. 2135, 1968.
[7] A. Otto, ‘Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection’ , Z. Naturforsch. 23a, pp. 2135, 1968.
[8] C. Nylander, B. Liedberg and T. Lind, ‘Gas detection by means of
surface plasmons resonance’, Sensors and Actuators 3, pp. 79-88,
1982.
[9] B. Liedberg, C. Nylander and I. Lundstrom, ‘Surface plasmonsresonance for gas detection and biosensing’, Sensnors and Actuators 4,pp.299-304, 1983.
[10] http://www.biacore.com/lifesciences/history/index.html
[11] Jorgenson, R. C. and Yee, S. S., A fiber-optic chemical sensor based on surface plasmon resonance, Sens Actuators B Chem, 12, pp.213-220, 1993
[12] http://www.chemyq.com/xz/xz1/7314qqbcb.htm
[13] http://zh.wikipedia.org/zh-tw/Wiki
[14] Anuj K. Sharma and B. D. Gupta, On the performance of different
bimetallic combinations in surface plasmon resonance based fiber
optic sensors, J. Appl. Phys. 093111, 2007
[15] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W.
Alexander, J. Ward, C. A. Ward, Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, Appl. Opt. 11, pp.1099-1119, 1983
[16] Xiaoyan Yang, Deming Liu, and Wenchong Xie, High-sensitivity optical sensor basedon plasmon resonance enhanced goos-hanchen shift, IEEE, pp.74-77 ,2006
[17] Kyeong-Seok Lee, Ju Myeong Son, Dae-Yong Jeong, Taek Sung Lee, and Won Mok Kim, Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach, Sensors, 10, pp.11390-11399, 2010
[18] 莊智堯,串接型雙共振區表面電漿共振光纖感測器之量測分析,大同大學光電工程研究所,2011
[19] 胡濟唐,雙波長 1310/1550 nm 表面電漿共振光纖感測器之研究,大同大學光電工程研究所,2011
[20] M. N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, A theoretical investigation ofenvironmental monitoring using surface plasmon resonance waveguide sensors, Sensors and Actuators A 51 pp.211-217, 1996
[21] Hocheol Shin, and Shanhul Fan, All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure, Phys. Rev. Lett. 96, 07397, 2006
[22] Byoung-jin Jeon, Moo-hwan Kim, and Jae-chul Pyun, Application of parylene film as a linker layer of SPR biosensor, Procedia Chemistry 1, pp.1035-1038, 2009
[23] Yu Wang, Wavelength selection with coupled surface plasmon waves, Appl. Phys. Lett 82, pp.4385-4387, 2003
[24] A. I. Csurgay, and W. Porod, Surface Plasmon waves in nanoelectronic circuits, Int. J. Circ. Theor. Appl. Pp339-361, 2004
[25] K. A. Murphy, B. R. Fogg, R.O. Claus, and A. M. Vengsarkar, Spatially-weighted vibration sensors using tapered two-mode optical fibers, J. Lightwave Technol., Vol. 10, pp.1680-1687, 1992
[26] J. A. Ferri, E. M. Frins, and W. Dultz, Optical fiber vibration sensor using (Pancharatnam) phase step interferometry, J.Lightwave Tecnol., Vol. 15, pp.968-971, 1997
[27] Chii-Wann Lin, Shi-Ming Lin, Ying-Tsuen Lion, The fabrication of fiber surface plasmon resonance microsensor for biomedical application, Institute of biomedical engineering N.T.U, 2002
[28] Rajan Iha, and Goncal Badenes, Effect of fiber core dopant concentration on the performance of surface plasmon resonance-basd fiber optic sensor, Sensors and Actuators A 150, pp212-217, 2009
[29] Jiri Homola, Sinclair S. Yee, and Gunter Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B 54, pp.3-15, 1999
[30] L. M. Zhang and D. Uttamchandani, Optical chemical sensing employing surface plasmon resonance, Electron. Lett. 23, pp1649-1470, 1988
[31] P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, Surface plasmon resonance on grating as novel means for gas sensing, Sensors and Actuators B 8, pp155-160, 1992
[32] J. S. Schoenwald, and L. R. Bivins, RF amplitude modulated fiber optic acoustic sensing, IEEE Ultrasonics Symposium, pp.327-330, 1990
[33] K. McCallion, G. Fawcett, and W. Johnstone, tunable in-line fiber-optic bandpass filter, Opt. Lett., Vol.19, No.8, pp.542-544,1994
[34] A. Gloag, K. McCallion, L. Langford, and W. Johnstone, Tunable erbium fiber laser using a novel overlay bandpass filter, Opt. Lett., Vol.19, No.11, pp.801-803, 1994
[35] L. Dong, P. Hua, T. A. Birks, L. Reekie and P. St. J.Russel, Novel add / drop filters for wavelength-division-multiplexing optical fiber systems using a bragg grating assisted mismatched coupler, J. Lightwave Technol, Vol.8, No.12, pp.1656-1658, 1996
[36] M. Kimura and K. Toshima, A new type optical fiber vibration-sensor, Solid-state sensors and actuators, pp.1225-1228, 1997
[37] W. Johnstine, G Thrusby, D. Moodie, R. Varshney and B. Culshaw, Fiber optic wavelength channel selector with high resolution, optics communications, 188, pp.301-305, 2001
[38] T. Y. kim, J. H. Nam, K. S. Suh, and T Takada, Acoustic monitoring of HV equipment with optical fiber sensor, IEEE dielectrics and electrical insulation transactions, Vol. 10, pp.266-270, 2003
[39] M. H. Chiu, M. H. Chi, and C. H. Shin, Optimum sensitivities of D-type optical fiber sensor at a specific incident angle, Appl. Phys. A89, pp413~416, 2007
[40] J. T. Hastings, Optimizing surface plasmon resonance sensors for limit of detection based on a Cramer-Rao bound, IEEE seonsors journal, Vol. 8, No2, pp.170-175, 2008
[41] Sachin Kumar Srivastava, and Banshi Dhar Gupta, A multitapered fiber-optic SPR sensor with enhanced sensitivity, IEEE Photonics Technology Letters, Vol. 23, No. 13, pp.923-925, 2011
[42] 羅吉宗,薄膜科技與應用,全華圖書股份有限公司,修訂二版,2009
[43] Hong-Yu Lin, Yu-Chia Tsao, and Woo-Hu Tsai, Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light, Applied optics 46, pp800-806, 2007
[44] Woo-Hu Tsai, Yu-Chia Tsai, and Hong-Yu Lin, Cross-point analysis for a multimode fiber sensorbased on surface plasmon resonance, OPTICS LETTERS 30, pp.2209-2211, 2005
[45] 中國化工產品大全,上卷,Da252 醋酸正丅酯,p557
[46] Sachin K. Srivastava, and Banshi D. Gupta, Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor, Sensors and Actuators B: Chemical, pp.559-562, 2011
[47] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕及吳育明,奈米科技導論,全華圖書股份有限公司,修訂版,pp.4-10
[48] 陳宏彬,橢圓偏光儀之原理與應用,儀科中心簡訊80期,2007
[49] Wu Yuan, H. P. Ho, C. L. Wong, S. K. Kong, and Chinlon Lin, Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity, IEEE sensors journal, Vol 7, No. 1, pp.70-73, 2007
[50] Petr I. Nikitin, Pavel M. Anokhin, and Anatoli A. Beloglazov, Chemical sensor based on surface plasmon resonance in Si grating structures, IEEE ,Sensors and Actuators, pp.1359-1362, 1997
[51] www.ee-techs.com/lcd/oled-parts.doc
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top