跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林聲旭
研究生(外文):Sheng-Hsu Lin
論文名稱:電漿後處理對類鑽碳膜表面性質及血液相容性之影響
論文名稱(外文):Effect of Post-treatment on the Surface Properites and Blood Compatibility of Diamond-like Carbon Films
指導教授:曾信雄曾信雄引用關係吳錫芩
指導教授(外文):Shinn-Shyong TzengHsi-Chin Wu
口試委員:曾信雄吳錫芩
口試日期:2012-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:表面性質血液相容性類鑽碳膜
外文關鍵詞:hemocompatibilityDiamond-like carbonsurface peoperties
相關次數:
  • 被引用被引用:4
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以電漿輔助化學氣相沉積系統沉積類鑽碳膜,觀察氫氣及氬氣電漿在沉積碳膜後轟擊試片表面對碳膜表面特性以及血液相容性的影響。實驗分別以表面輪廓儀量測膜厚,拉曼光譜儀分析碳膜結構,原子力顯微鏡量測碳膜表面粗糙度,水接觸角分析儀量測碳膜表面親疏水特性來觀察碳膜表面特性。血液相容性測試分別以二喹啉甲酸蛋白質分析法(Bicinchoninic acid protein assay,BCA assay)分析碳膜表面白蛋白/纖維蛋白之吸附比,利用掃描式電子顯微鏡觀察血小板於碳膜表面的貼附情況,並以MTT進行細胞相容性測試。
實驗結果顯示,隨著電漿後處理時間的增加,所沉積出來的類鑽碳膜表面粗糙度以及沉積膜厚都會下降。實驗結果也發現,電漿後處理時間越久,碳膜表面的sp2比例,膜表面疏水性,白蛋白以及纖維蛋白的吸附量也都會增加。使用氬氣電漿後處理的碳膜,在後處理時間達十五分鐘時達到最高的白蛋白/纖維蛋白吸附比;使用氫氣電漿後處理的碳膜,在後處理時間一分鐘達到最好的白蛋白/纖維蛋白吸附比。不論類鑽碳膜是否經過電漿後處理,碳膜的毒性反應都很低。經過電漿後處理的類鑽碳膜在浸漬於血小板中180分鐘後,血小板的貼附程度有明顯增加。
Diamond-like carbon films were prepared on silicon substrates using radio frequency plasma enhanced chemical vapor deposition. The different post-treatment time from hydrogen plasma and argon plasma were investigated. The film thickness, surface roughness, film hydrophobicity and surface microstructure of DLC films were characterized by Alpha-Step, atomic force microscopy (AFM) , water contact angle and Raman spectroscopy. The protein adhesion, biocompatibility and platelet adhesion were characterized by bicinchoninic acid protein assay (BCA assay) , MTT assay and scanning electron microscope (SEM) .
The results showed that the increase of plasma post-treatment time reduced the suface roughness and film thickness. The results also showed that the longer the plasma post-treatment time, the higher the sp2 content, surface hydrophobic, and the absorption of albumin and fibrinogen. For the argon plasma post-treatment, adsorption ratio of albumin to fibrinogen reached the highest value at fifteen minutes. For the hydrogen plasma post-treatment, adsorption ratio of albumin to fibrinogen reached the highest value at one minute. cytotoxicity tests showed low cytotoxicity for DLC films with or without plasma post-treatment. DLC films with plasma post-treatment showed significant increase in platelet attatchment when platelet was incubated for 180 minutes.
總目錄
第一章緒論1
1.1前言1
1.2研究目的1
第二章 文獻回顧3
2.1碳材料與類鑽碳膜3
2.1.1 碳材料3
2.1.2 非晶質碳膜分類4
2.2類鑽碳膜的製備6
2.2.1 類鑽碳膜的成膜機制6
2.2.2類鑽碳膜的成膜方法7
2.3電漿後處理對類鑽碳膜產生的效應11
2.3.1電漿後處理對類鑽碳膜表面蝕刻速率的影響11
2.3.2電漿後處理對類鑽碳膜表面粗糙度的影響12
2.3.3電漿後處理對類鑽碳膜結構的影響13
2.2.4電漿後處理對類鑽碳膜表面親疏水性的影響13
2.4影響血液相容性的因素19
2.4.1血液相容性19
2.4.2血塊生成過程19
2.4.3影響血液相容性的因素21
2.4.4類鑽碳的血液相容性相關研究22
第三章 實驗29
3.1實驗流程29
3.2製程設備以及量測設備30
3.2.1射頻電漿輔助化學氣相沉積系統30
3.2.2表面輪廓儀(Alpha-Step Profilometer ) 32
3.2.3原子力顯微鏡(Atomic Force Microscopy,AFM ) 33
3.2.4 拉曼光譜儀(Raman Spectroscopy) 33
3.2.5 水接觸角分析35
3.2.6 蛋白質活性測試35
3.2.6.1實驗流程35
3.2.6.2 BCA介紹36
3.2.7 血小板形貌觀察36
3.2.7.1實驗流程36
3.2.8細胞測試37
3.2.8.1細胞毒性分析37
3.2.8.1.1實驗步驟37
3.2.8.1.2 細胞培養38
3.2.8.1.2.1 冷凍細胞的活化38
3.2.8.1.2.2 細胞生長時培養基的更換與分盤39
3.2.8.1.2.3細胞冷凍保存40
3.2.8.1.2.4 細胞計數介紹40
3.2.8.2 MTT介紹40
3.2.8.3內皮細胞表面形貌觀察41
3.2.9微孔盤分析儀(ELISA reader) 41
3.2.10 細胞培養箱42
3.2.11 無菌操作台(Laminar Flow) 42
3.2.12 掃描式電子顯微鏡((Scanning Electron Microscopy; SEM) 42
第四章 結果與討論45
4.1電漿後處理製程對類鑽碳膜膜厚的影響45
4.2電漿後處理製程對類鑽碳膜表面粗糙度的影響46
4.3電漿後處理製程對類鑽碳膜表面結構的影響50
4.4電漿後處理製程對類鑽碳膜親疏水性的影響52
4.5電漿後處理製程對類鑽碳膜白蛋白&纖維蛋白吸附程度的影響56
4.6電漿後處理製程對類鑽碳膜的細胞毒性影響63
4.7電漿後處理製程對類鑽碳膜血小板貼附程度的影響65
第五章 結論73
參考文獻77
[1]沈曾民,新型碳材料,曉園出版社(2006).
[2]J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering R 37 (2002) 129-281.
[3]Takahiro Nakahigashi, Yoshikazu Tanaka, Koji Miyake, Hisanori Oohara, Properties of flexible DLC film deposited by amplitude-modulated RF P-CVD, Tribology International 37 (2004) 907–912.
[4]S. R. E Silva, J. D. Carey, R. U. A. Khan, E. G. Gerstner, J. V. Anguita, AMORPHOUS CARBON THIN FILMS, Handbook of Thin Film Materials, edited by H.S. Nalwa Volume 4: Semiconductor and Superconductor Thin Films,chapter 9 (2002)404-419.
[5]S.R.P. Silva, Shi Xu, B.K. Toy, H.S. Tan, H.-J. Scheibe, M. Chhowalla, W.I. Milne, The structure of tetrahedral amorphous carbon thin films,
Thin Solid Films 290-291 (1996) 317-322.
[6]B.K. Tay, P. Zhang, On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc, Thin Solid Films 420-421 (2002) 177–184.
[7]F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao,
A.F. Goncharov, The pressure-temperature phase and transformation diagram for carbon, Carbon Vol.34, No.2 (1996) 141-153.
[8]羅吉宗,薄膜科技與應用,全華科技圖書 (2005).
[9]白木靖寬,吉田貞史,薄膜工程學,全華科技圖書 (2006).
[10]D.R. McKenzie, D. Muller, B.A. Pailthorpe, Properties of tetrahedral amorphous carbon prepared by vacuum arc deposition, Diamond and Related Materials, 1 (1991) 51-59.
[11]C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment, Thin Solid Films 226 (1993) 30.
[12]J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon, Diamond and Related Materials 2 (1993) 984-989.
[13]S. Aisenberg, R. Chabot, Ion‐Beam Deposition of Thin Films of Diamondlike Carbon, Journal of Applied Physics 42 (1971) 2953.
[14]H.R. Kaufman, Technology of ion beam sources used in sputtering, Journal of Vacuum Science and Technology 15 (1978) 272.
[15]S. Ulrich, j. Schwan, W. Donner, H. Ehrhardt, Knock-on subplantation-induced formation of nanocrystalline c-BN with r.f. magnetron sputtering and r.f. argon ion plating, Diamond and Related Materials 5 (1996) 548-551
[16]T. Sonoda, S. Nakao, M. Ikeyama, Deposition of Ti/C nano-composite DLC films by magnetron DC sputtering with dual targets, Vacuum 84 (2010) 666–668.
[17]Yin-Yu Chang, Da-Yung Wang, Chi-How Chang, WeiTe Wu, Tribological analysis of nano-composite diamond-like carbon films deposited by unbalanced magnetron sputtering, Surface and Coatings Technology 184 (2004) 349–355.
[18]Jae E. Oh, Joel D. Lamb, Paul G. Snyder, John A. Woollam, David C. Liu, InP MIS structures with diamondlike amorphous carbon films deposited by ion-beam sputtering and from plasma, Solid-State Electronics Vol. 29, No. 9 (1986) 933-940.
[19]M.C. Polo, J.L. Andujar, A. Hart, J. Robertson, W.I. Milne, Preparation of tetrahedral amorphous carbon films by filtered
cathodic vacuum arc deposition, Diamond and Related Materials 9 (2000) 663–667.
[20]M.C. Salvadori, D.R. Martins , M. Cattani, DLC coating roughness as a function of film thickness, Surface & Coatings Technology 200 (2006) 5119-5122.
[21]Deok Yong Yun, Won Seok Choi, Yong Seob Park, Byungyou Hong, Effect of H2 and O2 plasma etching treatment on the surface of diamond-like
carbon thin film, Applied Surface Science 254 (2008) 7925–7928.
[22]X.L. Peng, Z.H. Barber, T.W. Clyne, Surface roughness of diamond-like carbon films prepared using various techniques, Surface and Coatings Technology 138 (2001) 23-32.
[23]I.Sh. Trakhtenberg, S.A. Plotnikov, V.B. Vykhodets, V.A. Pavlov, G.A. Raspopova, Modification of amorphous diamond-like films by bombardment with low-energy ions, Diamond and Related Materials 5 (1996) 943-946.
[24]Stuart T. Jackson, Ralph G. Nuzzo, Determining hybridization differences for amorphous carbon from the XPS C1s envelope, Applied Surface Science 90 (1995) 195-203.
[25]Shinn-Shyong Tzeng, Ying-Jie Wu, Jiong-Shiun Hsu, The effects of plasma pre-treatment and post-treatment on diamond-like carbon films synthesized by RF plasma enhanced chemical vapor deposition, Vacuum 83 (2009) 618–621.
[26]Akira Mochizuki, Tatsuhisa Ogawa, Keishi Okamoto, Tatsuyuki Nakatani, Yuki Nitta, Blood compatibility of gas plasma-treated diamond-like carbon surface—Effect of physicochemical properties of DLC surface on blood compatibility, Materials Science and Engineering C 31 (2011) 567–573.
[27]L. Ostrovskaya,, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova, wettability and surface energy of oxidized and hydrogen plasma-treated diamond films, Diamond and Related Materials 11 (2002) 845–850.
[28]R.K. Roy, H.W. Choi, J.W. Yi, M.-W. Moon, K.-R. Lee, D.K. Han,
J.H.Shin,A. Kamijo, T. Hasebe, Hemocompatibility of surface-modified, silicon-incorporated,diamond-like carbon films, Acta Biomaterial (2009) 249–256.
[29]J.S Temenoff, A.G Mikos,Biomaterials,Pearson Prentice Hall(2008).
[30]J.M. Garguilo, B.A. Davis, M. Buddie, F.A.M. Kock, R.J. Nemanich, Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films, Diamond and Related Materials 13 (2004) 595–599.
[31]Wen J. Ma, Andrew J. Ruys, Rebecca S. Mason, Phil J. Martin, Avi Bendavid, Zongwen Liu, Mihail Ionescu, Hala Zreiqat, DLC coatings: Effects of physical and chemical properties on biological response, Biomaterials 28 (2007) 1620–1628.
[32]Huang Yan, Lu. Xiaoying, Ma Jingwu , Huang Nan, In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces, Science 255 (2008) 257–259
[33]T. Saito, T. Hasebe, S. Yohena, Y. Matsuoka, A. Kamijo, K. Takahashi, T. Suzuki, Antithrombogenicity of fluorinated diamond-like carbon films, Diamond & Related Materials 14 (2005) 1116– 1119.
[34]T. Hasebe, T. Ishimaru, A. Kamijo, Y. Yoshimoto, T. Yoshimura, S. Yohena, Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films, Diamond & Related Materials 16 (2007) 1343–1348.
[35]C. Popov, H. Vasilchina, W. Kulisch, F. Danneil, M. Stuber, S. Ulrich, A. Welle, J.P. Reithmaier, Wettability and protein adsorption on ultrananocrystalline diamond/amorphous carbon composite films, Diamond and Related Materials 18 (2009) 895–898 .
[36]T.I.T. Okpalugoa. Ogwu, P.D. Maguire, J.A.D. McLaughlin, D.G. Hirst,
In-vitro blood compatibility of a-C:H:Si and a-C:H thin films,
Diamond and Related Materials 13 (2004) 1088–1092.
[37]T. I. T. Okpalugo, A. A. Ogwu, A. C. Okpalugo, R. W. McCullough, W. Ahmed, The Human Micro-Vascular Endothelial Cells In Vitro Interaction with Atomic-Nitrogen-Doped Diamond-Like Carbon Thin Films, Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater (2008) 85B: 188–195.
[37] Liang Peng, Bochu Wang, Peng Ren, Reduction of MTT by flavonoids
in the absence of cells, Biointerfaces 45 (2005) 108–111.
[38] 羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹,工業材料雜誌,2004.
[39] K. Navaneetha Pandiyaraj, V. Selvarajan, J. Heeg, F. Junge, A. Lampka, T. Barfels, M. Wienecke,Young Ha Rhee, Hyoung Woo Kim, Influence of bias voltage on diamond like carbon (DLC) film deposited on polyethylene terephthalate (PET) film surfaces using PECVD and its blood compatibility, Diamond & Related Materials 19 (2010) 1085–1092.
[40] Huang Yan, Lu Xiaoying, Ma Jingwu, Huang Nan, In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces, Applied Surface Science 255 (2008) 257–259.
[41] J.Y. Chen, L.P. Wang, K.Y. Fu, N. Huang, Y. Leng, Y.X. Leng, P. Yang, J. Wang, G.J. Wan, H. Sun, X.B. Tian, P.K. Chu, Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition, Surface and Coatings Technology 156 (2002) 289–294.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊