跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉旻錡
研究生(外文):Min chi Liu
論文名稱:LiNi1/3Mn 1/3Co 1/3O2鋰離子正極材料
論文名稱(外文):Research on the Lithium-ion Cathode Materials of LiNi1/3Mn1/3Co1/3O2
指導教授:劉彥君劉彥君引用關係林正雄林正雄引用關係
指導教授(外文):Yen chun LiuCheng-Hsiuing Lin
口試委員:劉彥君林正雄葉翳民
口試委員(外文):Yen chun LiuCheng-Hsiuing LinYin Min Yeh
口試日期:2012-01-11
學位類別:碩士
校院名稱:吳鳳科技大學
系所名稱:光機電暨材料研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:鋰離子電池層狀結構LiNi1/3Mn1/3Co1/3O2
外文關鍵詞:Lithium ion batteryLayered structureLiNi1/3Mn1/3Co1/3O2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
本研究以LiOH•H2O水溶液與Ni(NO3)2•6H2O、Mn(CH3COO)2•4H2O及Co(CH3COO)2•4H2O粉末做為原料,以濕式法合成鋰離子電池正極材料LiNi1/3Mn1/3Co1/3O2、LiNi0.4Mn0.2Co0.4O2及LiNi0.8Mn0.1Co0.1O2。探討合成過程中不同溫度,Li過量比等對於電化學性能的影響。
研究結果顯示,三種材料均在850℃時,XRD分析結果證實,合成產物具有類似LiCoO2層狀結構且具有α-NaFeO2結構。
SEM結果顯示,LiNi1/3Mn1/3Co1/3O2的形貌為不規則狀,溫度越高發生團聚現象,平均粒徑約為1μm。常溫下初始放電電容量以850℃為最高,並以850℃對於及添加過量鋰含量的做充放電測試極做50次循環測試,平均電容量損失率為6%。
在實驗最後部分,以廢電池再製正極材料,從廢電池中擷取鈷、鋰、鎳,將可大輻降低製造鋰電池正極材料的成本,分析溶液內鋰、鎳、錳、鈷的比例,並添加不足的金屬離子成份,直接製成正極材料粉末,經過電化學性能測試,可達到122.21 mAh/g約為純原料(自製)製作之85%。使正極材料之製造成本大幅降低,也可將其中含有價值之鈷等材料予以回收,達到廢棄物減廢及資源化。

In this study, the solution of LiOH•H2O and the powders of Ni(NO3)2•6H2O、 Mn(CH3COO)2•4H2O、 and Co(CH3COO)2•4H2O were used as raw materials, and the wet method was used to synthesize the cathode materials of LiNi1/3Mn1/3Co1/3O2, LiNi0.4Mn 0.2Co 0.4O2, and LiNi0.8Mn0.1Co0.1O2 for lithium ion batteries in order to investigate the influence of excessive Li in different temperatures on electrochemical performance in the synthesis process.
The research result is as follows. When all of the three materials were in 850℃, the synthetic product had a layered structure similar to the layered LiCoO2 structure as well as a α-NaFeO2 structure according to the XRD analysis result. In addition, according to the SEM result, the shape of LiNi1/3Mn1/3Co1/3O2 was irregular. When the temperature was high, there were agglomerations, and the average particle size was about 1μm. In room temperature, the initial discharge capacitance was the highest in 850℃. Therefore, 50 cycle tests were applied to the charging and recharging test electrodes with excessive lithium in 850℃, and the average loss ratio of power capacity was 6%.
In the last part of the experiment, waste batteries were used to reproduce cathode materials; Co, Li, and Ni were extracted from the waste batteries, which will greatly reduce the cost to produce cathode materials for lithium batteries. The percentage of Li, Ni, Mn, and Co in the solution was analyzed, and insufficient ingredients were added to directly produce the powder for cathode materials. In the test of electrochemical performance, it may reach 122.21(mAh/g), approximately 85% of the powder made from pure materials. The cost will be greatly reduced, and valuable materials, such as Co, will be recycled to achieve waste reduction and recycling.
目 錄
中文摘要..........................................I
Abstract........................................II
誌謝............................................III
目 錄..........................................IV
表目錄..........................................VII
圖目錄..........................................VIII
第一章 緒論.......................................1
1.1 鋰離子電池簡介.................................1
1.2 研究大綱與目的.................................2
1.2.1研究大綱.....................................2
1.2.2研究目的.....................................3
第二章 理論基礎與文獻回顧..........................4
2.1 電池簡介......................................4
2.1.1 二次電池....................................6
2.2 鋰離子電池工作原理.............................8
2.2.1 鋰離子電池理論電容量.........................10
2.3 鋰離子電池材料................................10
2.3.1 鋰離子正極材料..............................12
2.4 LiNi1/3Mn1/3Co1/3O2的結構特性.................18
2.5 鋰離子電池負極材料.............................20
2.6 隔離膜材料....................................20
2.7 電解質材料....................................21
2.8 LiNi1/3Mn1/3Co1/3O2 正極材料合成方法...........23
2.8.1 共沉澱法....................................24
2.8.2 溶膠-凝膠法.................................24
2.8.3 固相法......................................24
2.8.4 水熱法......................................25
2.8.5 噴霧乾燥法...................................25
2.8.6 燃燒法......................................25
第三章 實驗方法與步驟..............................27
3.1 實驗藥品及設備.................................27
3.1.1 實驗藥品....................................27
3.1.2 實驗設備....................................27
3.2 材料鑑定與分析儀器.............................28
3.2.1 X-Ray繞射分析儀.............................28
3.2.2 掃描式電子顯微鏡.............................29
3.3 實驗流程......................................30
3.3.1 濕式法合成LiNi1/3Mn1/3Co1/3O2...............31
3.3.2 濕式法添加鎳合成LiNi1-x-yMnxCoyO2............32
3.3.3 鋰含量對材料性能的影響........................33
3.3.4 廢電池回收再製正極材料........................34
3.4 電池之組裝....................................36
3.4.1 正極極板製作.................................36
3.4.2 負極極板製作.................................37
3.4.3 電解質及隔離膜................................37
3.4.4 電池組裝.....................................38
3.5 電池充放電測試..................................39
3.6 氮氣操作手套箱..................................39
第四章 結果與討論 ..................................40
4.1正極材料LiNi1/3Mn1/3Co1/3O2之製備與分析...........40
4.1.1 LiNi1/3Mn1/3Co1/3O2合成溫度對材料結構的影響....40
4.1.2 LiNi1/3Mn1/3Co1/3O2合成温度對材料形貌的影響....41
4.1.3 LiNi1/3Mn1/3Co1/3O2合成温度及對電化學性能的影響.43
4.2 正極材料LiNi0.4Mn0.2Co0.4O2之製備與分析..........46
4.2.1 LiNi0.4Mn0.2Co0.4O2合成溫度對材料結構的影響.....46
4.2.2 LiNi0.4Mn0.2Co0.4O2合成溫度對材料形貌的影響.....48
4.2.3 LiNi0.4Mn0.2Co0.4O2合成温度及對電化學性能的影響.49
4.3 正極材料LiNi0.8Mn0.1Co0.1O2之製備與分析..........52
4.3.1 LiNi0.8Mn0.1Co0.1O2合成溫度對材料結構的影響.....52
4.3.2 LiNi0.8Mn0.1Co0.1O2合成溫度對材料形貌的影響.....53
4.3.3 LiNi0.8Mn0.1Co0.1O2合成温度及對電化學性能的影響..55
4.4 廢電池回收再製正極材料分析結果.....................58
4.4.1 廢棄鋰電池製成LiNi1/3Mn1/3Co1/3O2之XRD圖........58
4.4.2 廢棄鋰電池製成LiNi1/3Mn1/3Co1/3O2之形貌..........59
4.4.3 廢棄鋰電池製成LiNi1/3Mn1/3Co1/3O2之電化學性能.....60
4.4.4 各種不同比例與廢電池之初始放電圖...................61
第五章 結論與展望 .....................................63
5.1 結論..............................................63
5.2 未來展望...........................................64
參考文獻...............................................65

表目錄
表2.1 鋰離子二次電池的發展過程............................5
表2.2 鋰電池種類、特性與範例..............................6
表2.3 常見二次電池之特性比較..............................8
表2.4 正極材料系統性能比較表..............................12
表2.5 有機溶劑之基本物性..................................23
表3.1 ICP檢測廢電池數據...................................35
表4.1 LiNi1/3Mn1/3Co1/3O2之800℃至900℃放電容量............44
表4.2 LiNi1/3Mn1/3Co1/3O2之850℃添加過量鋰放電電容量........46
表4.3 LiNi1/3Mn1/3Co1/3O2之850℃添加過量鋰循環容量損失率.....46
表4.4 LiNi0.4Mn0.2Co0.4O2之800℃至900℃放電容量............50
表4.5 LiNi0.4Mn0.2Co0.4O2之850℃添加過量鋰放電電容量........52
表4.6 LiNi0.4Mn0.2Co0.4O2之850℃添加過量鋰循環容量損失率.....52
表4.7 LiNi0.8Mn0.1Co0.1O2之800℃至900℃放電容量............55
表4.8 LiNi0.8Mn0.1Co0.1O2之850℃添加過量鋰放電電容量........57
表4.9 LiNi0.8Mn0.1Co0.1O2之850℃添加過量鋰循環容量損失率....57
表4.10三種比例50次放電循環表...............................58
表4.11廢棄鋰電池製備333材之825℃至900℃放電容量.............61
表4.12廢棄鋰電池在850℃製備正極材料與不同比例之放電容量.......62

圖目錄
圖2.1鋰離子在充放電過程示意圖...............................9
圖2.2電池組成元件之成本比例分佈圖...........................11
圖2.3 LiCoO2層狀岩鹽結構(α-NaFeO2結構).....................14
圖2.4 LiNiO2層狀岩鹽結構(α-NaFeO2結構).....................15
圖2.5 LiFePO4橄欖石(Olivine)結構圖.........................17
圖2.6 LiMn2O4尖晶石結構....................................18
圖2.7超晶格有序的晶体結構模型................................19
圖2.8 LiNi1-x-yCoxMnyO2 之電池長循環測試比較圖...............20
圖3.1 XRD分析儀器示意圖.....................................29
圖3.2 SEM分析儀器示意圖.....................................30
圖3.3濕式法合成LiNi1/3Mn1/3Co1/3O2粉末流程圖.................32
圖3.4濕式法合成LiNi1-x-yMnxCoyO2粉末流程圖...................33
圖3.5濕式法合成Li1+δNi1- x-yMnxCoyO2粉末流程圖...............34
圖3.6廢棄鋰電池.............................................35
圖3.7廢棄鋰電池正極、負極....................................35
圖3.8廢棄鋰電池合成正極粉末流程圖.............................36
圖3.9正極極板製作流程圖......................................37
圖3.10鈕扣型電池組裝示意圖...................................38
圖4.1不同温度製備之LiNi1/3Mn1/3Co1/3O2 XRD圖.................41
圖4.2 LiNi1/3Mn1/3Co1/3O2 850℃添加過量鋰XRD圖...............41
圖4.3 LiNi1/3Mn1/3Co1/3O2 SEM圖............................43
圖4.4 LiNi1/3Mn1/3Co1/3O2 800℃至900℃初始充放電圖...........44
圖4.5 LiNi1/3Mn1/3Co1/3O2 850℃添加鋰初始放電圖..............45
圖4.6 LiNi1/3Mn1/3Co1/3O2 850℃循環放電圖...................45
圖4.7不同温度製備之LiNi0.4Mn0.2Co0.4O2 XRD圖.................47
圖4.8 LiNi0.4Mn0.2Co0.4O2 850℃添加過量鋰XRD圖...............47
圖4.9 LiNi0.4Mn0.2Co0.4O2 SEM圖............................49
圖4.10 LiNi0.4Mn0.2Co0.4O2初始放電圖.........................50
圖4.11 LiNi0.4Mn0.2Co0.4O2 850℃添加鋰初始放電圖..............51
圖4.12 LiNi0.4Mn0.2Co0.4O2 850℃循環放電圖...................51
圖4.13不同温度製備之LiNi0.8Mn0.1Co0.1O2 XRD圖.................53
圖4.14 LiNi0.8Mn0.1Co0.1O2 850℃添加過量鋰XRD圖...............53
圖4.15 LiNi0.8Mn0.1Co0.1O2 SEM圖.............................54
圖4.16 LiNi0.8Co0.1Mn0.1O2初始放電圖..........................55
圖4.17 LiNi0.8Mn0.1Co0.1O2 850℃添加鋰初始放電圖...............57
圖4.18 LiNi0.8Mn0.1Co0.1O2 850℃循環放電圖.....................57
圖4.19三種比例50次循環放電圖....................................58
圖4.20廢棄鋰電池製成LiNi1/3Mn1/3Co1/3O2之XRD圖..................59
圖4.21廢棄鋰電池與不同比例之XRD圖................................59
圖4.22廢棄鋰電池製成333材之SEM圖.................................60
圖4.23廢棄鋰電池製成333材正極材料初始放電圖........................61
圖4.24廢棄鋰電池在850℃製成正極材料與不同比例之放電圖...............62



1.Alcntara, R., Jaraba, M., Lavela, P. and J. Tirado, “New LiNiCo1-2yMn1+yO4 Spinel oxide solid solutions as
5V electrode for Li-ion Batteries”, Electrochemical Society, Vol.151, A(1), pp.53-58(2004).
2.Hideki, K., Toyoki, F. and T. Kazuhisa, “High-temperature Storage performance of Li-ion batteries using a
mixture of Li-Mn Spinel and Li-Ni-Co-Mn oxide as a positive electrode material” , Elecyrochemical and Solid-
State Letters, Vol.8, A(2), pp.87-90(2005).
3.De-Cheng, L., Takahisa, M., Lian, Z. and Y. Masaki, “Effect of synthesis method on the electrochemical
performanceof LiNi1/3Mn1/3Co1/3O2” , Journal of Power Sources, Vol.132, pp.150–155(2004).
4.李日琪,「鋰離子電池陽極碳材料開發」,碩士論文,國立中央大學,桃園(2000).
5.Davidsona, I.J., McMillana, R.S. and J. Murraya, “Lithium-ion cell based on orthorhombic LiMn02” ,Journal of
Power Sources, Vol.54, pp.232-235(1995).
6.Ritchie, A.G., “Recent Developments and Future Prospects for Lithium Ion Batteries” , Journal of Power
Sources, Vol.96, pp.180-183(2001).
7.林坤毅,「鋰電池負極材料Li4Ti5O12之合成及其性質」,碩士論文,吳鳳技術學院,光機電暨材料研究所,嘉義(2009)。
8.李日琪,「鋰離子電池陽極碳材料開發」,碩士論文,國立中央大學,桃園(2000).
9.吳宇平、戴曉兵、馬軍旗、程預江編著,「鋰離子電池¬-應用與實踐」,化學工業出版社,北京(2004)。
10.Ping, L., Haoqing, W., “Construction and destruction of passivating layer on Li& in organicelectrolytes:
an impedance study”, Journal of Power Sources,Vol.56, pp.81-85(1995).
11.吳尚恩,「以檸檬酸製備鋰離子電池陰極材料-LiMn2O4之合成機構」,碩士論文,國立成功大學,台南(2002)。
12.林志豪,「鋁、鎳添加物對鋰離子電池陰極材料-LiMn2O4電性及電學性能之影響」,碩士論文,國立成功大學,材料科學及工程學系,台南
(2003)。
13.張忠勝,「鋰離子電池Li1/3Ni1/3Co1/3Mn1/3O2」,碩士論文,國立中央大學,桃園(2007)。
14.王志峰,「鋰離子電池層狀結構陰極材料合成與改質研究」,碩士論文,國立中央大學,桃園(2003)。
15.Moshtev, R., Zlatilova, P., Manev,V. and K. Tagawa, “Synthesis of LiNiO2 in air atmosphere: X-ray
diffraction characterization and electrochemical investigation”, Journal of Power Sources, Vol.62, pp59-66
(1996).
16.Shinova, E., Mandzhukova, T. and E. Grigorova, “On the incorporation of extra Li in lithium cobaltate
Li1+xCo1−xO2”, Solid State Ionics, Vol.187, pp 43-49(2011).
17.廖宏奇,「表面材質對陰極材料LiMn2O4之充放電特性效應探討」,碩士論文,國立成功大學,材料科學及工程學系,台南(2005)。
18.張會琴、黃曉琴、黃俊芳,「鋰離子電池層狀正及材料的研究進展」,武漢生物工程學院學報,第3卷,第3期,第179-182頁(2007)。
19.Moshtev, R., Zlatilova, P., Manev, V. and K. Tagawa, “Synthesis of LiNiO2 in air atmosphere: X-ray
diffraction characterization and electrochemical investigation”, Journal of Power Sources, Vol.62, pp59-66
(1996).
20.呂正中、周震濤,「磷酸鐵鋰離子電池正極材料」,化學通報,第67卷,第1-6頁(2004)。
21.Hong, A.S., Kim, J.S. and K. Jaehoon, “Small capacity decay of lithium iron phosphate (LiFePO4) synthesized
continuously in supercritical water Comparison with solid-state method”, Journal of Supercritical Fluids,
Vol.55, pp.1027-1037 (2011).
22.謝明傑,「以固態反應法製作磷酸鐵鋰正極材料」,碩士論文,吳鳳技術學院,光機電暨材料研究所,嘉義(2009)。
23.劉明錚,「錳酸鋰系列正極材料之研製」,碩士論文,吳鳳技術學院,光機電暨材料研究所,嘉義(2010)。
24.Yasuhiro, F., Miura, H. and N. Suzuki, “Structural and electrochemical properties of
LiNi1/3Co1/3Mn1/3O2:Calcination temperature dependence”, Journal of Power Sources, Vol.171, pp.894–903(2007).

25.Koyama, K.Y., Tanaka, I. and H. Adacki, “Crystal and electronic structures of superstructural Li1-x
[Co1/3Ni1/3Mn1/3]O2(0≦x≦1)”, Journal of Power Sources, Vol.19, pp.664-648(2003).
26.Ping, H., Haoran, W. and O. Tetsuya, “Electrochemical characterstics of layeres LiNi1/3Co1/3Mn1/3O2 and with
different synthesis conditions”, Journal of Power Sources, Vol.160, pp.627-632 (2006).
27.Yasuhiro, F., Miura, H. and N. Suzuki, “Strucral and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 and
with different synthesis conditions”, Journal of Power Sources, Vol.160, pp.627-632(2006).
28.Zhaolin, L., Aishui, Y. and Y.L. Jim, “Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode
materials of secondary lithium batteries”, Journal of Power Sources, Vol.416, pp.81–82(1999).
29.Sung, C.P, Kim, M. and H. Sang, “The elevated temperature performance of LiMn2O4 coated with LiNi1-xCoxO2
(x=0.2and1)”, Journal of Power Sources,Vol.107, pp.42-47(2002).
30.Hayashi, K., Nemoto, Y., Tobishima, S. and J. Yamaki, “Mixed Solvent electrolyte for High Voltage Lithium
Metal Secondary Cells”,Electrochim Acta, Vol.44, pp.2337-2344(1999).
31.Tan, L. and L. Haowen, “High rate charge–discharge properties of LiNi1/3Co1/3Mn1/3O2 synthesized via a low
temperature solid-state method”,Solid State Ionics, Vol.181, pp.1530-1533(2010).
32.Zhang, P., Zhang L., Ren, X. and Q. Yuan, “Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2–
PPy composites cathode materials for lithium-ionbattery”,Synthetic Metals, Vol.161, pp.1092-1097(2011).
33.Masaya, K., “Structure,morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid
state reaction”, Journal of Power Sources, Vol.148, pp.85-89(2005).
34.張向峰,「鋰離子電池正極材料Li(Ni1/3Co1/3Mn1/3)O2的合成與改性和研究」,碩士論文,合肥工業大學,中國(2010)。
35.Myung, S.T., “Hydrothermal synthesis of Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium
secondary battery”,Electrochimica Amca, Vol.58, pp.4800-4806(2005).
36.Park, S.H., Yoon, C.S. and S.G. Kang, “Synthesis and structural characterization of layered Li
[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method”, Electrochimica Acta, Vol.49,
pp.557-563(2004).
37.葉乃清,「回火處理對LiNi1/3Co1/3Mn1/3O2結構與性能影響」,武漢生物工程學院學報,第74卷,第5期,第429-433頁(2011)。
38.Yue, W.Z, “Investigation of LiNi1/3Co1/3Mn1/3O2 cathode particles after 300 discharge/charge cycling in a
lithium-ion battery by analytical TEM”, Journal of Power Sources , Vol.183, pp.316-324(2008).
39.李長東,余海軍,「從廢舊鋰電池中回收制備三元正极材料的研究」,TECHNOLOGY技術,第8期,第62-65頁(2010)。
40.于青,「廢鋰離子電池中金屬的回收」,碩士論文,東北大學,中國(2008)。
41.Mark, P.S. and A. Heather, “An investigation of mass and brand diversity in a spent battery recycling
collection with an emphasis on spent alkaline batteries:Implications for waste management and future policy
concerns”, Journal of Power Sources, pp.1-5(2011).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊