(3.232.129.123) 您好!臺灣時間:2021/03/04 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴世光
研究生(外文):Shyh-Kuan Tai
論文名稱:KLF4 與 DcR3在惡性腫瘤進展演變之角色
論文名稱(外文):Roles of KLF4 and DcR3 in cancer progression
指導教授:謝世良張學逸
指導教授(外文):Shie-Liang HsiehShyue-Yih Chang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:86
中文關鍵詞:頭頸鱗狀上皮癌第三號誘餌受體免疫調控
外文關鍵詞:kr&uumlppel-like factor 4decoy receptor 3tumor-associated macrophagehead and neck squamous cell carcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
惡性腫瘤進展演變是眾多基因變異累積的結果,其中腫瘤細胞週期失調以及免疫脫逃的特性是促成腫瘤進展的兩大原因。KLF4是一個轉錄因子,它的生理功能可以抑制細胞週期G1/S期的進程,但是KLF4在不同部位的人類癌症中扮演著不同的角色,在頭頸鱗狀上皮癌的角色目前仍不清楚。第三號誘餌受體(Decoy receptor 3, DcR3)是腫瘤壞死因子受器超家族的成員之ㄧ,能透受體中和或非受體中和作用,調控宿主的免疫機能。高度DcR3表達在許多人類癌症已知與較差的預後相關,但其作用機制仍不清楚。本研究分析KLF4及DcR3在頭頸鱗狀上皮癌的表達狀況,以及它們在腫瘤進展演變中扮演的角色。
經由免疫組織染色我們發現,在正常及癌前病變上皮中存在層次特異性的KLF4表現,但是62例頭頸鱗狀上皮癌中有42例(67.7%)KLF4蛋白表現有下降的現象;值得注意的是,另20例(32.3%)具有持續KLF4表達的頭頸鱗狀上皮癌,卻有較差的存活率(p=0.005),這個現象在晚期病患特別明顯。我們接著在SAS細胞株中建立KLF4過度表現的穩定轉植株(stable clones),發現KLF4過度表現之後顯著造成穩定轉植株細胞移行與侵犯能力的增加,多重抗藥特性的出現,以及皮下腫瘤形成能力(in vivo tumorigenicity)的上升。以免疫組織染色分析56例頭頸鱗狀上皮癌之DcR3表達,結果顯示有21例(37.5%)為高DcR3表達,有顯著較差存活率,顯示DcR3是一個不良預後因子。我們過去的研究發現DcR3可調控體外(in vitro)巨噬細胞的活化,降低第二型主要組織相容性複合體(MHC class II, MHC-II)的表現。為了進一步研究DcR3是否透過調控腫瘤伴隨巨噬細胞來促進腫瘤進展,我們首先建立CT26-DcR3穩定轉殖株。與載體轉殖株相比較,我們發現DcR3穩定轉殖株的皮下腫瘤生長較為快速,同時有較多的腫瘤伴隨巨噬細胞浸潤現象。我們接著建立以CD68啟動子(promoter)表現DcR3的DcR3轉殖鼠,來進一步研究DcR3對腫瘤進展的影響。分析DcR3轉殖鼠的巨噬細胞,可以發現IL-10、IL-1ra、YM1,以及精氨酸酶(arginase)活性的增加;而IL-12、TNF-?恁BIL-6, NO,以及MHC-II的表現則有下降現象。此外,CT26腫瘤皮下生長及擴散能力在DcR3轉殖鼠都發現顯著上升,而精氨酸酶抑制劑nor-NOHA,以及組蛋白去乙醯抑制劑(histone deacetylase inhibitor) sodium valproate,可以抑制此一現象。
綜上所述,KLF4與DcR3在頭頸鱗狀上皮癌的高度表達,可以促進腫瘤進展演變,但透過不同的調控機制。其中持續KLF4表達直接促成侵犯及抗藥特性的增加,代表對於此類腫瘤治療藥物劑量與合併治療的重要性。另一方面,高度DcR3表達可透過間接調控腫瘤伴隨巨噬細胞的方式促進腫瘤進展,而組蛋白去乙醯抑制劑的合併使用將可能增加現有標準治療的效果。因此,我們的研究將能對未來臨床病患預後分期以及發展個人化癌症治療的概念,提供重要的訊息。

Cancer progression involves multiple complicated mechanisms caused by an accumulation of genetic alterations. Cell cycle dysregulation and immune evasion are two important cancer hallmarks leading to progression. Krüppel-like factor 4 (KLF4) is a transcription factor that physiologically inhibits cell cycle G1/S progression, but has contrasting roles in different human cancers. Its role in head and neck squamous cell carcinoma (HNSCC) has not been elucidated. Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor receptor superfamily that can modulate host immunity through both decoy and non-decoy functions. Up-regulation of DcR3 correlates with poor prognosis in various human cancers, but the mechanisms involved remain unclear. In this study, the expression of KLF4 and DcR3 in HNSCC was evaluated, and their roles in tumor progression were investigated.
KLF4 expression was evaluated by immunohistochemistry (IHC), showing compartment-specific expression in normal and dysplastic epithelia. Forty-two (67.7%) of 62 HNSCC had decreased expression, while the other 20 (32.3%) had persistent KLF4 expression that independently correlated with worse disease-specific survival (p=0.005), especially in those with advanced disease. Similarly, enforced expression of KLF4 in cell lines SAS demonstrated increased in vitro migration/invasion abilities, multi-drug resistance, and in vivo tumorigenicity. The IHC of DcR3 in 56 HNSCCs demonstrated high DcR3 expression in 21 (37.5%) samples that independently correlated with poor survival (p=0.016). Because DcR3 is capable of modulating macrophage differentiation with down-regulated MHC-II expression in vitro, this study investigated whether DcR3 promotes tumor progression via TAMs. CT26-DcR3 stable transfectants were first established. In subcutaneous tumor growth assay, DcR3-transfectants grew faster and attracted TAMs infiltration compared to vector control clones. CD68 promoter-driven DcR3 transgenic (Tg) mice were next generated. Macrophages isolated from DcR3-Tg mice displayed higher levels of IL-10, IL-1ra, YM1, and arginase activity, while IL-12, TNF-?? IL-6, NO, and MHC-II expressions were down-regulated. Both tumor growth and spreading abilities of CT26 cells were significantly enhanced in DcR3-Tg mice, but could be abolished by arginase inhibitor nor-NOHA and histone deacetylase (HDAC) inhibitor sodium valproate.
In conclusion, persistent KLF4 expression and overexpression of DcR3 contribute to tumor progression in HNSCC via different control mechanisms. Persistent KLF4 expression in HNSCC directly confers aggressiveness and drug resistance, indicating the importance of treatment dosage and combination. On the other hand, DcR3 overexpression modulates TAM differentiation in vivo which contributes to tumor progression, while HDAC inhibitor is promising in potentiating current standard therapy for tumors with high DcR3 expression. These results provide valuable information for improving clinical prognostication and future personalized cancer treatment.

CONTENTS
PAGE NO.
ACKNOWLEDGEMENTS ………………………………………………………… 3
CONTENT ………………………………………………………………………….. 4
ABSTRACT (English) ……………………………………………………………. 8
ABSTRACT (Chinese) …………………………………………………………… 10
ABBREVIATIONS ………………………………………………………………… 12
CHAPTER 1 INTRODUCTION
1.1 Cancer in Taiwan and treatment dilemma ………………………………. 13
1.2 Heterogeneous controls in cancer progression ……………...…………. 13
1.3 Krüppel-like factor 4 (KLF4) ………………………………………………. 14
1.3.1 Diverse physiological functions of KLF4 ………………………...….. 14
1.3.2 KLF4 as a context-dependent gene in human cancer ……………. 15
1.4 Decoy receptor 3 (DcR3) ………………..………………………………... 15
1.4.1 Roles of DcR3 in immunomodulation ………………………………. 15
1.4.2 Roles of DcR3 in human diseases and cancers ………………….. 16
1.4.3 Tumor-associated macrophage (TAM) ……………………………… 17
1.4.4 DcR3 modulates macrophage differentiation ………………………. 18
1.5 Aims of the project …………………………………………………………. 18
CHAPTER2 MATERIALS AND METHODS
2.1 Reagents and kits …………………………………………………………. 19
2.2 Patients and tissues ………………………………………………………. 26
2.3 Immunohistochemistry (IHC) and scoring ………………………………. 26
2.4 Protein extraction and Western blot analysis ………………………….. 27
2.5 RNA purification and real-time PCR analysis …………………………. 28
2.6 Cell culture, plasmid construction and stable transfection …………… 28
2.7 Cell migration and invasion assays …………………………………….. 29
2.8 Chemosensitivity assay ………………………………………………….. 29
2.9 Subcutaneous tumor growth assay …………………………………….. 30
2.10 Tail vein injection metastasis assay ……………………………………. 30
2.11 Generation of DcR3-Tg mice ……………………………………………. 30
2.12 Isolation of peritoneal macrophages and TAMs ………………………. 31
2.13 Flow cytometry and enzyme-lined immunosorbent assay …………… 32
2.14 Gelatin zymography ……………………………………………………… 32
2.15 Arginase and nitric oxide assay ………………………………………… 32
2.16 Statistical analysis ………………………………………………………... 33
CHAPTER 3 PERSISTENT KLF4 EXPRESSION PREDICTS PROGRESSION AND POOR PROGNOSIS OF HEAD AND NECK SQUAMOUS CELL CARCINOMA
3.1 Introduction ………………………………………………………………… 34
3.1.1 KLF4 and cell cycle regulation ……………………………………… 34
3.1.2 Role of KLF4 in HNSCC …………………………………………….. 34
3.2 Results …………………………………………………………………….. 35
3.2.1 Decreased KLF4 expression in a majority of HNSCC …………… 35
3.2.2 Persistent KLF4 expression is associated with poor prognosis
in HNSCC ……………………………………………………………… 36
3.2.3 KLF4 overexpression increases migration and invasion
abilities of HNSCC cells ……………………………………………… 37
3.2.4 KLF4 overexpression enhances tumorigenicity of HNSCC
cells in vivo …………………………………………………………….. 38
3.2.5 High KLF4 expression induces multi-drug resistance in
HNSCC cells ………………………………………………………….. 38
3.3 Discussion ……………………………………………………………....... 39
3.3.1 KLF4 expression in normal epithelium and HNSCC ………………. 39
3.3.2 Oncogenic role of persistent KLF4 expression in HNSCC ……….. 39
3.3.3 Hypothetic model for pleiotropic functions of KLF4 ……………….. 40
CHAPTER4 DECOY RECEPTOR 3 ENHANCES TUMOR PROGRESSION VIA INDUCTION OF TUMOR-ASSOCIATED MACROPHAGES
4.1 Introduction ………………………………………………………………… 42
4.2 Results ……………………………………………………………………… 43
4.2.1 Poor prognostic impact of high DcR3 expression in HNSCC ……. 43
4.2.2 DcR3 induced TAM infiltration and promoted tumor growth ……… 44
4.2.3 Generation and characterization of CD68 promoter-driven
DcR3-Tg mice …………………………………………………………. 44
4.2.4 DcR3 modulated macrophage differentiation in DcR3-Tg mice …. 45
4.2.5 Subcutaneous tumor growth was enhanced by DcR3 ……………. 46
4.2.6 DcR3 enhanced tumor spreading in vivo …………………………… 47
4.2.7 DcR3-enhanced tumor growth was abolished by
nor-NOHA and VPA …………………………………………………… 47
4.3 Discussion …………………………………………………………………. 48
4.3.1 Macrophage/TAM differentiation modulated by DcR3 in vivo ……. 48
4.3.2 DcR3-modulated TAMs contribute to tumor progression ………… 49
4.3.3 Therapeutic implications …………………………………………….. 50
CHAPTER 5 DISCUSSION AND CONCLUSIONS
5.1 Contribution of KLF4 and DcR3 to HNSCC progression ……………. 51
5.2 Oncogenic functions of KLF4 …………………………………..………… 52
5.3 Protumoral effect of DcR3 ……………………………………………….. 53
5.4 Conclusions ……………………………………………………………….. 54
REFERENCES ……………………………………………………………………. 56
FIGURE AND TABLES …………………………………………………………... 68
PUBLICATIONS ………………………………………………………………….. 98



1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70.
2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61(5):759-767.
3. Skobe M, Fusenig NE. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proceedings of the National Academy of Sciences of the United States of America 1998;95(3):1050-1055.
4. Laconi E, Doratiotto S, Vineis P. The microenvironments of multistage carcinogenesis. Semin Cancer Biol 2008;18(5):322-329.
5. Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature 2008;454(7203):436-444.
6. Mantovani A. Cancer: Inflaming metastasis. Nature 2009;457(7225):36-37.
7. Kim R, Emi M, Tanabe K, et al. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006;66(11):5527-5536.
8. Garrett-Sinha LA, Eberspaecher H, Seldin MF, et al. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 1996;271(49):31384-31390.
9. Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 1996;271(33):20009-20017.
10. Chen X, Johns DC, Geiman DE, et al. Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J Biol Chem 2001;276(32):30423-30428.
11. Zhang W, Geiman DE, Shields JM, et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 2000;275(24):18391-18398.
12. Shie JL, Chen ZY, Fu M, et al. Gut-enriched Kruppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res 2000;28(15):2969-2976.
13. Evans PM, Liu C. Roles of Krupel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai) 2008;40(7):554-564.
14. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-872.
15. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-676.
16. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451(7175):141-146.
17. Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005;7(11):1074-1082.
18. Zhao W, Hisamuddin IM, Nandan MO, et al. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 2004;23(2):395-402.
19. Wei D, Gong W, Kanai M, et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res 2005;65(7):2746-2754.
20. Wei D, Kanai M, Huang S, et al. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 2006;27(1):23-31.
21. Wang N, Liu ZH, Ding F, et al. Down-regulation of gut-enriched Kruppel-like factor expression in esophageal cancer. World J Gastroenterol 2002;8(6):966-970.
22. Hu W, Hofstetter WL, Li H, et al. Putative tumor-suppressive function of kruppel-like factor 4 in primary lung carcinoma. Clin Cancer Res 2009;15(18):5688-5695.
23. Ohnishi S, Ohnami S, Laub F, et al. Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem Biophys Res Commun 2003;308(2):251-256.
24. Nakahara Y, Northcott PA, Li M, et al. Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia 2010;12(1):20-27.
25. Yasunaga J, Taniguchi Y, Nosaka K, et al. Identification of aberrantly methylated genes in association with adult T-cell leukemia. Cancer Res 2004;64(17):6002-6009.
26. Foster KW, Ren S, Louro ID, et al. Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ 1999;10(6):423-434.
27. Foster KW, Frost AR, McKie-Bell P, et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res 2000;60(22):6488-6495.
28. Pandya AY, Talley LI, Frost AR, et al. Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res 2004;10(8):2709-2719.
29. Chen YJ, Wu CY, Chang CC, et al. Nuclear Kruppel-like factor 4 expression is associated with human skin squamous cell carcinoma progression and metastasis. Cancer Biol Ther 2008;7(5):783-785.
30. Lin WW, Hsieh SL. Decoy receptor 3: A pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochemical pharmacology 2011;81(7):838-847.
31. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396(6712):699-703.
32. Yu KY, Kwon B, Ni J, et al. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem 1999;274(20):13733-13736.
33. Migone TS, Zhang J, Luo X, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 2002;16(3):479-492.
34. Yang CR, Hsieh SL, Teng CM, et al. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res 2004;64(3):1122-1129.
35. Hsu TL, Chang YC, Chen SJ, et al. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J Immunol 2002;168(10):4846-4853.
36. Hsu TL, Wu YY, Chang YC, et al. Attenuation of Th1 response in decoy receptor 3 transgenic mice. J Immunol 2005;175(8):5135-5145.
37. Chang YC, Hsu TL, Lin HH, et al. Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol 2004;75(3):486-494.
38. Han B, Moore PA, Wu J, et al. Overexpression of human decoy receptor 3 in mice results in a systemic lupus erythematosus-like syndrome. Arthritis Rheum 2007;56(11):3748-3758.
39. Hsu MJ, Lin WW, Tsao WC, et al. Enhanced adhesion of monocytes via reverse signaling triggered by decoy receptor 3. Exp Cell Res 2004;292(2):241-251.
40. Yang CR, Hsieh SL, Ho FM, et al. Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-kappa B-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J Immunol 2005;174(3):1647-1656.
41. Yang CR, Wang JH, Hsieh SL, et al. Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ 2004;11 Suppl 1:S97-107.
42. Tang CH, Hsu TL, Lin WW, et al. Attenuation of bone mass and increase of osteoclast formation in decoy receptor 3 transgenic mice. J Biol Chem 2007;282(4):2346-2354.
43. Wu YY, Chang YC, Hsu TL, et al. Sensitization of cells to TRAIL-induced apoptosis by decoy receptor 3. J Biol Chem 2004;279(42):44211-44218.
44. You RI, Chang YC, Chen PM, et al. Apoptosis of dendritic cells induced by decoy receptor 3 (DcR3). Blood 2008;111(3):1480-1488.
45. Chang YC, Chen TC, Lee CT, et al. Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 2008;111(10):5054-5063.
46. Chang YC, Chan YH, Jackson DG, et al. The glycosaminoglycan-binding domain of decoy receptor 3 is essential for induction of monocyte adhesion. J Immunol 2006;176(1):173-180.
47. Kim S, McAuliffe WJ, Zaritskaya LS, et al. Selective induction of tumor necrosis receptor factor 6/decoy receptor 3 release by bacterial antigens in human monocytes and myeloid dendritic cells. Infect Immun 2004;72(1):89-93.
48. Otsuki T, Tomokuni A, Sakaguchi H, et al. Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clinical and experimental immunology 2000;119(2):323-327.
49. Funke B, Autschbach F, Kim S, et al. Functional characterisation of decoy receptor 3 in Crohn's disease. Gut 2009;58(4):483-491.
50. Lee CS, Hu CY, Tsai HF, et al. Elevated serum decoy receptor 3 with enhanced T cell activation in systemic lupus erythematosus. Clinical and experimental immunology 2008;151(3):383-390.
51. Bamias G, Siakavellas SI, Stamatelopoulos KS, et al. Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clinical immunology 2008;129(2):249-255.
52. Chen CC, Yang YH, Lin YT, et al. Soluble decoy receptor 3: increased levels in atopic patients. The Journal of allergy and clinical immunology 2004;114(1):195-197.
53. Chen CY, Yang KY, Chen MY, et al. Decoy receptor 3 levels in peripheral blood predict outcomes of acute respiratory distress syndrome. Am J Respir Crit Care Med 2009;180(8):751-760.
54. Chen HF, Chen JS, Shun CT, et al. Decoy receptor 3 expression during the menstrual cycle and pregnancy, and regulation by sex steroids in endometrial cells in vitro. Human reproduction 2009;24(6):1350-1358.
55. Ohshima K, Haraoka S, Sugihara M, et al. Amplification and expression of a decoy receptor for fas ligand (DcR3) in virus (EBV or HTLV-I) associated lymphomas. Cancer Lett 2000;160(1):89-97.
56. Roth W, Isenmann S, Nakamura M, et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res 2001;61(6):2759-2765.
57. Bai C, Connolly B, Metzker ML, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci U S A 2000;97(3):1230-1235.
58. Wu Y, Guo E, Yu J, et al. High DcR3 expression predicts stage pN2-3 in gastric cancer. Am J Clin Oncol 2008;31(1):79-83.
59. Tsuji S, Hosotani R, Yonehara S, et al. Endogenous decoy receptor 3 blocks the growth inhibition signals mediated by Fas ligand in human pancreatic adenocarcinoma. Int J Cancer 2003;106(1):17-25.
60. Macher-Goeppinger S, Aulmann S, Wagener N, et al. Decoy receptor 3 is a prognostic factor in renal cell cancer. Neoplasia 2008;10(10):1049-1056.
61. Takahama Y, Yamada Y, Emoto K, et al. The prognostic significance of overexpression of the decoy receptor for Fas ligand (DcR3) in patients with gastric carcinomas. Gastric Cancer 2002;5(2):61-68.
62. Wu Y, Han B, Sheng H, et al. Clinical significance of detecting elevated serum DcR3/TR6/M68 in malignant tumor patients. Int J Cancer 2003;105(5):724-732.
63. Chang PM, Chen PM, Hsieh SL, et al. Expression of a soluble decoy receptor 3 in patients with diffuse large B-cell lymphoma predicts clinical outcome. Int J Oncol 2008;33(3):549-554.
64. Tu HF, Liu CJ, Liu SY, et al. Serum decoy receptor 3 level: a predictive marker for nodal metastasis and survival among oral cavity cancer patients. Head & neck 2011;33(3):396-402.
65. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5(12):953-964.
66. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23(11):549-555.
67. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4(1):71-78.
68. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006;66(2):605-612.
69. Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 2004;40(11):1660-1667.
70. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009;9(4):239-252.
71. Sica A, Schioppa T, Mantovani A, et al. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006;42(6):717-727.
72. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010;22(2):231-237.
73. Schartner JM, Hagar AR, Van Handel M, et al. Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 2005;51(4):279-285.
74. Loercher AE, Nash MA, Kavanagh JJ, et al. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol 1999;163(11):6251-6260.
75. Hanada T, Nakagawa M, Emoto A, et al. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 2000;7(7):263-269.
76. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002;196(3):254-265.
77. Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 2002;7(2):177-189.
78. Salvesen HB, Akslen LA. Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 1999;84(5):538-543.
79. Hagemann T, Wilson J, Burke F, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 2006;176(8):5023-5032.
80. Wang L, Wei D, Huang S, et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 2003;9(17):6371-6380.
81. Corraliza IM, Campo ML, Soler G, et al. Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 1994;174(1-2):231-235.
82. Kleinbongard P, Rassaf T, Dejam A, et al. Griess method for nitrite measurement of aqueous and protein-containing samples. Methods Enzymol 2002;359:158-168.
83. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005;55(2):74-108.
84. Forastiere A, Koch W, Trotti A, et al. Head and neck cancer. N Engl J Med 2001;345(26):1890-1900.
85. Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 2006;6(1):11-23.
86. Ghaleb AM, Katz JP, Kaestner KH, et al. Kruppel-like factor 4 exhibits antiapoptotic activity following gamma-radiation-induced DNA damage. Oncogene 2007;26(16):2365-2373.
87. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13(12):1501-1512.
88. Bova RJ, Quinn DI, Nankervis JS, et al. Cyclin D1 and p16INK4A expression predict reduced survival in carcinoma of the anterior tongue. Clin Cancer Res 1999;5(10):2810-2819.
89. Vielba R, Bilbao J, Ispizua A, et al. p53 and cyclin D1 as prognostic factors in squamous cell carcinoma of the larynx. Laryngoscope 2003;113(1):167-172.
90. Mills CD, Shearer J, Evans R, et al. Macrophage arginine metabolism and the inhibition or stimulation of cancer. Journal of immunology 1992;149(8):2709-2714.
91. Raes G, De Baetselier P, Noel W, et al. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. Journal of leukocyte biology 2002;71(4):597-602.
92. Raes G, Van den Bergh R, De Baetselier P, et al. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 2005;174(11):6561; author reply 6561-6562.
93. Kim TY, Bang YJ, Robertson KD. Histone deacetylase inhibitors for cancer therapy. Epigenetics 2006;1(1):14-23.
94. Shields JM, Yang VW. Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor. Nucleic Acids Res 1998;26(3):796-802.
95. Chen X, Whitney EM, Gao SY, et al. Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J Mol Biol 2003;326(3):665-677.
96. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860-867.
97. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005;7(3):211-217.
98. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006;124(2):263-266.
99. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annual review of immunology 2009;27:451-483.
100. Lee YS, Dutta A. MicroRNAs in cancer. Annual review of pathology 2009;4:199-227.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔