(3.215.180.226) 您好!臺灣時間:2021/03/06 13:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔣岳夆
研究生(外文):Yueh-Feng Chiang
論文名稱:縫合椎間盤之纖維環切口以維持椎間盤內壓之生物力學評估
論文名稱(外文):Biomechanical evaluations of retaining intradiscal pressure after anulotomy by different anular suture techniques
指導教授:鄭誠功鄭誠功引用關係曾永輝曾永輝引用關係
指導教授(外文):Cheng-Kung ChengYang-Hwei Tsuang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:纖維環切開術纖維環縫合椎間盤內壓改良型束帶縫合法有限元素分析定量椎間盤壓力計
外文關鍵詞:annulotomyannular repairintradiscal pressuremodified purse-string suture (MPSS)finite element analysisquantitative discomanometry (QD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
  自從 Dr. Mixter 與 Dr. Barr 在 1934 年報告以來,椎間盤切除術廣泛使用在多種腰椎椎間盤退化性疾患。但是椎間盤在切除後也產生許多的不良後果。因此持續有研究發展封堵纖維環切口,嘗試延緩椎間盤因此導致的退化。成功的纖維環封堵,應能維持足夠的髓核內壓,如此才可能達成減緩椎間盤退化的目標,但使用一般簡單縫合方式無法取得令人滿意的結果,可能為縫合方式未臻理想,無法維持髓核內壓所致。文獻上的修補椎間盤纖維環缺口方式(器械或縫合法)主要評估它們承受日常生活中不同方向動作的能力,或可承擔不至於滲漏之最大施力,較少比較其維持椎間盤內壓之能力。故本研究從維持髓核內壓能力著眼,藉由生物力學參數,比較三種縫合橫向纖維環切口的縫合法間,維持髓核內壓的能力優劣。
  本研究先使用加強驗證後的人體第四、五腰椎椎間盤的有限元素模型,在左後外側方的纖維環製造一橫向切口,並以兩針簡單縫合、一針交叉縫合、或一種新發展之改良型束帶式縫合法縫合該切口,計算在切口處因縫線張力產生的接觸壓力大小,來比較三種縫合方式封閉纖維環切口維持髓核內壓的能力。然後再使用自屠宰場取得豬隻腰椎單節的終板-椎間盤-終板複合體,在椎間盤的前外側做橫向切口,以三種縫合方式來縫合纖維環切口後,再以定量椎間盤壓力計來量測該種縫合方式洩漏時的最大髓核內壓力,作為不同縫合方式能承受髓核內壓能力的比較方式。
  結果指出,在有限元素模擬方面,改良型束帶式縫合法在纖維環外層的縫合深度處,產生三種縫合方式中最大的接觸壓力。且在切口中央最易產生滲漏處產生的最小接觸壓力,亦較其他兩種縫合方式分別高出 68% (兩針簡單縫合)與 55% (一針交叉縫合)。而豬隻腰椎實驗結果,從定量椎間盤壓力計統計顯示,本縫合方式可產生的洩漏時最大壓力,也分別高出其他兩種縫合方式 85% 與 49% 。
  綜上所述,新型束帶式縫合不但在電腦模擬中可以產生較高的接觸壓力,阻抗髓核自纖維環切口處洩漏;動物實驗產生的洩漏壓力,也確實較其他兩種方式為高。代表該縫合方式,在維持髓核內壓方面表現優於其他兩種縫合方式。故在腰椎椎間盤切除手術中,縫合纖維環切口可以維持髓核內壓,理論上可能延緩椎間盤退化;而改良型束帶式縫合法可以提供較佳的縫合方式,值得在臨床上推廣使用。

Background. After Dr. Mixter and Dr. Barrs’ report for treating sciatica, discectomy was successful in treating various lumbar degenerative disc disease, However, the adverse effects of anulotomy during lumbar discectomy have been increasingly recognized, and methods are developing to repair the anular defect. Biomechanically, the repair should retain the intra-nuclear pressure, which is doubtful using the current suture techniques. Newer anular closure devices or suture techniques focused their attention on the ability to withstand multidirectional loads in daily activity or loads to withstand leakage, less on their ability to maintain intradiscal pressure. Therefore, this study compared the biomechanical parameters of different suture techniques on retaining intradiscal pressure after a simpler type of anulotomy.
Methods. A new suture technique, the modified purse-string suture, was introduced into a re-validated nonlinear finite element human disc model after creating a standard transverse slit incision, as well as two other suture techniques: either two simple sutures, or a horizontal crossed suture, and compared their contact pressure on the cleft contact surface. Then, porcine lumbar endplate-disc-endplate complexes with transverse slit incisions were repaired using the three techniques. Quantitative discomanometry was then applied to compare their leakage pressure, as a parameter of disc integrity.
Findings. In finite element model, the new technique created the greatest contact pressure along the suture range (the outer anulus), and generated a minimum contact pressure at the critical point, which was 68% & 55% higher than the other two suture techniques. In quantitative discomanometry, the new suture technique also had an average leakage pressure 85% and 49% higher than the other two suture techniques.
Interpretation. The modified purse-string suture can generate higher contact pressure than the other two techniques at finite element analysis and in realistic animal models, which aids in retaining intra-discal pressure, and should be encouraged in clinical practice.

目 錄
論文電子檔著作權授權書……………………………………………………………...… i論文審定同意書……………………………………………………..….…………………… ii誌謝…………………………………………………………………………….…………………. iii中文摘要…………………………………………….. ……….…..……….v
Abstract……………………………………………...………………..…...vii目錄………………………………….……..…….…………………….....ix圖目錄……………………….………….……………….…………..…...xii
表目錄……………………………….………………..……...…………xv
第一章 緒論………………………………………………………….…..1
1-1脊椎的解剖構造及生理功用…………………..…...……...…………2
1-1-1骨骼組織……………………………………….……………..…….4
1-1-2椎間盤與小面關節……………………………..………….……..6
1-1-2-1椎間盤………………………..………...…….……………..6
1-1-2-2小面關節……………………..……………………………..7
1-1-3脊椎旁韌帶………………………………..……….……………..8
1-2脊椎之生理功用……………………………….…..…….…………10
1-3脊椎之生物力學分析………………………….……..…….………..10
1-3-1椎體………………………………..……………….…………..11
1-3-2椎弓………………………………..……………….…………..11
1-3-3椎間盤……………………..……………………..…………..12
1-3-4小面關節………………………..…………………..…………..13
1-3-5脊椎旁韌帶組織………….…………..……….……………..13
1-4腰椎的椎間盤凸出……………………………..…….……..……..17
1-5腰椎椎間盤凸出的治療方式……….……………..….…………..18
1-6手術治療腰椎椎間盤凸出產生的問題……………….…………..18
1-7腰椎髓核內壓量測方法……………………………....……….…..22
1-8腰椎退化與髓核內壓的相關性………………………..……...…..25
1-9工學及醫學上有關滲漏與封堵的研究方法及有限元素分析法簡介……27
1-10文獻摘要及研究假設…………..……………..………………..…..30
第二章 研究方法………………………………..…………….………..32
2-1有限元素模擬……………………..………………………..…..…….34
2-2模型之再驗證……………………………..………………..…….…..35
2-2-1受軸向壓迫力時之位移量驗證………………………….………..36
2-2-2受彎矩時之活動度驗證……………………………………....…..37
2-2-3矢狀面椎間盤內壓應力分佈之驗證……………………....……..37
2-2-4椎間盤於軸向面上應力分佈之驗證……………………….……..39
2-3有限元素之切口及縫線模擬……………………………………..….42
2-4邊界條件設定及分析參數……………………………………….…..45
2-5豬隻腰椎椎間盤縫合實驗………………………….………………..45
2-5-1定量椎間盤壓力計………………….……………………………..45
2-5-2動物樣本準備方式……………………………......…………..…..45
2-5-3定量椎間盤壓力計儀器設置………………...…………….……..50
第三章 實驗結果…………………….…………..…………………..53
3-1有限元素分析結果…………………………..………….…………...53
3-1-1封堵面之接觸壓力比較………………………….….…………….53
3-1-2縫合對纖維環產生之破壞應力分布……….…………..…………56
3-2動物實驗結果………………………………….…….…...…………..59
第四章 討論………………………..…….………………...………...61
4-1研究方法討論…………………………………………….…………..61
4-2採裂隙中央分析滲漏之原因…………………….……....…………..62
4-3有限元素結果之討論………………………..…..………….………..63
4-4動物實驗結果之討論…………………………………….…………..65
4-5接觸壓力安全閥值及文獻上的髓核內壓力與本文數據之比較…...66
4-6改良式束帶縫合法之動物體內驗證……………..……….…………71
4-7本研究之限制……………….………….……..……………….……..71
4-8未來研究方向……………………….…...…………………….……..73
第五章 結論…………..……………...….…………………..………..75
參考文獻……………………….………..….…………………………..76

圖 目 錄
圖1-1:脊柱的外觀 ………………...…………..………………………..…….2
圖1-2:腰椎骨結構 ………………………...…...……………………………..4
圖1-3:椎間盤之結構剖面圖…….…………..……..…...…………………….7
圖1-4:附著在脊椎上的各韌帶示意圖.……………….……………………...8
圖1-5:脊椎骨與神經組織間的相對關係.………………..…………………10
圖1-6:脊椎功能性節段的圖解…………..….………………………………11
圖1-7:脊椎之前縱韌帶、後縱韌帶………..……...………………………..15
圖1-8:脊椎之黃韌帶、棘突間韌帶與棘突上韌帶…….…....……………..16
圖1-9:腰椎椎間盤凸出的形態分類..…..…………….…………………..…17
圖1-10:XcloseTM 組織縫合系統之交叉縫合示意圖..………..…….………20
圖1-11:荷包束帶式縫合法示意圖 ………...………….....………….……...20
圖1-12 : 改良式束帶縫合法縫合過程及完成示意圖..………………….……21
圖1-13:壓阻半導體製造之壓力感應器.…..…………………………..….…23
圖1-14:壓阻半導體探頭之髓核內壓量測法 …………...….…………….…23
圖1-15:定量椎間盤壓力計之設置…….…………………………..........…..24
圖1-16:椎間盤本體內壓、最大內壓與退化程度相互關係……………......25
圖1-17:活體椎間盤俯臥之水平方向與垂直方向內壓退化程度相互關係...26
圖1-18:航太科學中液壓幫浦之封堵機組分析..….…….….…..……..….…28
圖1-19:文獻上模擬髖關節唇與股骨頭交界面封阻潤滑液滲漏圖…..….…29
圖1-20:簡單縫合法示意圖………………………………………….………..31
圖1-21:交叉縫合法示意圖…………………………………………………...31
圖2-1:USP 3-0 PET 合成縫線之施力-位移曲線…………….………….....34
圖2-2:單一節段軸向受力時位移量之驗證………………….…….……..…36
圖2-3:椎間盤於矢狀面正中高度處之節點選取圖………………..……...…38
圖2-4:椎間盤內軸向壓應力之量變曲線測定驗證………………...………..39
圖2-5:Zhang 等人沿纖維環一半厚度處擷取路徑圖……………………….40
圖2-6:本研究之纖維環節點路徑選取圖…………………….……..………..41
圖2-7:節點路徑軸向壓應力解與文獻比較圖……………………...………..41
圖2-8:於椎間盤左後外側以接觸元素模擬裂隙圖…...……………………..42
圖2-9:縫線在有限元素模型接觸面之模擬規格………………………....….43
圖2-10:三種縫合模型圖………………………………………...……………44
圖2-11:正常豬隻胸腰薦椎標本及變形遭排除之豬隻標本………………...46
圖2-12:終板-椎間盤-終板複合體製備方式……………………...………….47
圖2-13:椎間盤橫向切口…………………………………………......………48
圖2-14:以剝離尺探入切口及深度示意圖…………………………...………48
圖2-15:三種縫合方式過程…………………….…………………..…….…..49
圖2-16:脊椎穿刺針針尖位置確認法……………..……………………..…..50
圖2-17:定量椎間盤壓力計簡圖及實際操作圖….…..……………………...51
圖2-18:液體由椎骨體,而非由縫合處滲出之範例樣本………………...…52
圖3-1:三縫合模型於纖維環切口接觸面產生之接觸壓力比較圖……….…53
圖3-2:三縫合模型於纖維環切口處產生平均與最大接觸壓力比較…….…54
圖3-3:縫合最大效應深度之元素圖………………………………….………54
圖3-4:三縫合模型於參考深度處之接觸壓力輸出比較圖……..….………..55
圖3-5:於參考深度之接觸壓力依簡單縫合模型標準化後之比較…...….…56
圖3-6:三種縫合法於纖維環基質產生之破壞應力分布圖………………….57
圖3-7:使用3-0縫線時導致下顎組織崩壞之縫線張力分布圖………...…..58
圖3-8:三種縫合方式動物實驗滲漏壓力比較圖………...……….……..…..60
圖4-1:封閉導管內流體因邊界層影響產生流速差異圖.……………..……..62
圖4-2:固定無限平板間因邊界層造成流速差異圖…...……………………..63
圖4-3:本研究數據與針刺數據比較圖………………….…………...……….65
圖4-4:本研究數據與文獻上壓應力之量變曲線測定數值比較………....….67
圖4-5:不同研究方式所得人體不同姿勢下之髓核內壓比較…………....….68
圖4-6:本實驗推估可容許髓核內壓與其他研究不同姿勢下髓核內壓值比較...……69
圖4-7:不同髓核內壓探針在不同姿勢下測量數據比較圖 …………..….….70
圖4-8:後續研究所建立模型及各種受力狀況舉例………….………………74


表 目 錄
表2-1:節錄之USP美規縫線編號及規格表……...……..…..……..33
表2-2:有限元素模型各材料之材料名稱、元素代號、材料性質及截面積...35
表3-1:三種縫合方式動物實驗下之滲漏壓力及統計表……………...59
表4-1:不同研究方式得出三種縫合方式可承受髓核內壓上限比較...67

Ahlgren, B.D., Vasavada, A., Brower, R.S., Lydon, C., Herkowitz, H.N., Panjabi, M.M., 1994. Anular incision technique on the strength and multidirectional flexibility of the healing intervertebral disc. Spine 19, 948-54.
Ahlgren, B.D., Lui, W., Herkowitz, H.N., Panjabi, M.M., Guiboux, J.P., 2000. Effect of anular repair on the healing strength of the intervertebral disc: a sheep model. Spine 25, 2165-70.
Andersson B.J., Ortengren R., Nachemson A., G., E., 1974. Lumbar disc pressure and myoelectric back muscle activity during sitting. 3. Studies on a wheelchair. Scand J Rehabil Med.
Bajanes G, P.A., Diaz M, 2007. One year follow up of discectomy patients who received a mesh to repair the annulus fibrosus. Proceedings of the Seventh Global Symposium on Motion Preservation Technology, Spine Arthroplasty Society (SAS7), Berlin, Germany.
Balasubramanian, K., Ranu, H.S., King, A.I., 1979. Vertebral response to laminectomy. J Biomech. 12, 813-23.
Bess RS, B.D., 2008. Degenerative disease of the lumbar spine, Vol., American Academy of Orthopaedic surgeons.
Bourgeault C, B.B., Griffith S, 2007. Biomechanical assessment of annulus fibrosus repair with suture tethered anchors. Proceedings of the Seventh Global Symposium on Motion Preservation Technology, Spine Arthroplasty Society (SAS7), Berlin, Germany.
Brinckmann, P., Grootenboer, H., 1991. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine 16, 641-6.
Bron, J.L., Helder, M.N., Meisel, H.J., Van Royen, B.J., Smit, T.H., 2009. Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges. Eur Spine J. 18, 301-13.
Bron, J.L., Veen, A.J., Helder, M.N., Royen, B.J., Smit, T.H., 2010. Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model. Eur Spine J. 19, 1347-1355.
Brown, T., Hansen, R.J., Yorra, A.J., 1957. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs: a preliminary report. J Bone Joint Surg Am. 39, 1135.
Burkhardt, R., Preiss, A., Joss, A., Lang, N.P., 2008. Influence of suture tension to the tearing characteristics of the soft tissues: an in vitro experiment. Clin Oral Implants Res. 19, 314-9.
Buttermann, G.R., 2004. Treatment of lumbar disc herniation: epidural steroid injection compared with discectomy. A prospective, randomized study. J Bone Joint Surg Am. 86-A, 670-9.
Carragee, E.J., Han, M.Y., Suen, P.W., Kim, D., 2003. Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and anular competence. J Bone Joint Surg Am. 85-A, 102-8.
Chen, C.S., Cheng, C.K., Liu, C.L., 2002. A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. J Spinal Disord Tech. 15, 53-63.
Chiang, C.J., Cheng, C.K., Sun, J.S., Liao, C.J., Wang, Y.H., Tsuang, Y.H., 2010. The Effect of a New Anular Repair After Discectomy in Intervertebral Disc Degeneration: An Experimental Study Using a Porcine Spine Model. Spine, 36, 761-9
Chiang, M.F., Zhong, Z.C., Chen, C.S., Cheng, C.K., Shih, S.L., 2006. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine 31, E682-9.
Claus, A., Hides, J., Moseley, G.L., Hodges, P., 2008. Sitting versus standing: Does the intradiscal pressure cause disc degeneration or low back pain? J Electromyogr Kinesiol. 18, 550-8.
Cyron, B.M., Hutton, W.C., 1980. Articular tropism and stability of the lumbar spine. Spine 5, 168-72.
Ferguson, S.J., Bryant, J.T., Ganz, R., Ito, K., 2000. The acetabular labrum seal: a poroelastic finite element model. Clin Biomech 15, 463-8.
Fye, M.A., Southern, E.P., Panjabi, M.M., Cholewicki, J., 1998. Quantitative discomanometry: technique and reproducibility in vitro. J Spinal Disord. & Tech. 11, 335.
Gibbons, C.E., Thompson, D., Sandow, M.J., 2009. Flexor tenorrhaphy tensile strength: reduction by cyclic loading: in vitro and ex vivo porcine study. Hand 4, 113-8.
Gotfried Y., Bradford, D., Oegema Jr, T., 1986. Facet joint changes after chemonucleolysis-induced disc space narrowing. Spine 11, 944-50.
Greenberg, J.A., Clark, R.M., 2009. Advances in suture material for obstetric and gynecologic surgery. Rev Obstet Gynecol. 2, 146-58.
Grootenboer, H., 1991. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs. Spine 16, 641-6.
Hakim, N.S., King, A.I., 1979. A three dimensional finite element dynamic response analysis of a vertebra with experimental verification. J Biomech. 12, 277-92.
Hampton, D., Laros, G., McCarron, R., Franks, D., 1989. Healing potential of the anulus fibrosus. Spine 14, 398-401.
Kamaric E, G.M., Vilendecic M, Eustacchio S, Trummer M, Eskinja N, Ledic D, Yeh O, Einhorn J, Lambrecht G, 2006. Surgical factors affecting reherniation rate after lumbar microdiscectomy: effect of defect size and amount of disc removed. Spine J. 6, 38S.
King, A.I., Prasad, P., Ewing, C.L., 1975. Mechanism of spinal injury due to caudocephalad accleration. Orthop Clin North Am. 6, 19-31.
Lamy, C., Bazergui, A., Kraus, H., Farfan, H.F., 1975. The strength of the neural arch and the etiology of spondylolysis. Orthop Clin North Am. 6, 215-31.
Lisi, A.J., O'Neill, C.W., Lindsey, D.P., Cooperstein, R., Cooperstein, E., Zucherman, J.F., 2006. Measurement of in vivo lumbar intervertebral disc pressure during spinal manipulation: a feasibility study. J Appl Biomech. 22, 234-9.
Lorenz, M., Patwardhan, A., Vanderby, R., Jr., 1983. Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8, 122-30.
Markolf, K.L., Morris, J.M., 1974. The structural components of the intervertebral disc: A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am. 56, 675-87.
McBroom, R.J., Hayes, W.C., Edwards, W.T., Goldberg, R.P., White, A.A., 3rd, 1985. Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am. 67, 1206-14.
McMillan, D., McNally, D., Garbutt, G., Adams, M., 1996. Stress distributions inside intervertebral discs: the validity of experimental ‘stress profilometry’. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 1989-1996 (vols 203-210). 210, 81-87.
McNally, D.S., Adams, M.A., 1992. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17, 66-73.
Miller, J.A., Schmatz, C., Schultz, A.B., 1988. Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13, 173-8.
Misawa, H., Ohtsuka, K., Nakata, K., Kinoshita, H., 1994. Embryological study of the spinal ligaments in human fetuses. J Spinal Disord. 7, 495-8.
Mixter, W.J., Barr, J.S., 1934. Rupture of the intervertebral disc with involvement of the spinal canal. N Eng J Med. 211, 5.
Nachemson, A., 1960. Lumbar intradiscal pressure. Experimental studies on post-mortem material. Acta Orthop Scand Suppl. 43, 1-104.
Nachemson, A., Morris, J., 1963. Lumbar discometry. Lumbar intradiscal pressure measurements in vivo. Lancet. 1, 1140-2.
Nachemson, A., Morris, J.M., 1964. In Vivo Measurements of Intradiscal Pressure. Discometry, a Method for the Determination of Pressure in the Lower Lumbar Discs. J Bone Joint Surg Am. 46, 1077-92.
Nachemson, A., 1965. In vivo discometry in lumbar discs with irregular nucleograms. Some differences in stress distribution between normal and moderately degenerated discs. Acta Orthop Scand. 36, 418-34.
Nachemson, A., 1966. The load on lumbar disks in different positions of the body. Clin Orthop Relat Res. 45, 107-22.
Nachemson, A., 1975. Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatol Rehabil. 14, 129-43.
Nachemson, A.L., Evans, J.H., 1968. Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J Biomech. 1, 211-20.
Naffziger, H.C., Inman, V., Saunders, J.B.d.M., 1938. Lesions of intervertebral disc and ligamenta flava; clinical and anatomical studies. Surg. Gnec. Obstet. 66, 12.
Osti, O.L., Vernon-Roberts, B., Fraser, R.D., 1990. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine 15, 762-7.
Padua, R., Padua, S., Romanini, E., Padua, L., de Santis, E., 1999. Ten- to 15-year outcome of surgery for lumbar disc herniation: radiographic instability and clinical findings. Eur Spine J. 8, 70-4.
Panjabi, M., Brown, M., Lindahl, S., Irstam, L., Hermens, M., 1988. Intrinsic disc pressure as a measure of integrity of the lumbar spine. Spine 13, 913-7.
Panjabi, M.M., Goel, V.K., Takata, K., 1982. Physiologic strains in the lumbar spinal ligaments. An in vitro biomechanical study 1981 Volvo Award in Biomechanics. Spine 7, 192-203.
Panjabi, M.M., Southern, E.P., Oxland, T.R., Duranceau, J.S., 1993. Quantitative discomanometry and acute disk injuries: an experimental model. J Spinal Disord. 6, 497-506.
Panjabi, M.M., 2007. Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 22, 257-65.
Raffaini, G., Elli, S., Ganazzoli, F., 2006. Computer simulation of bulk mechanical properties and surface hydration of biomaterials. J. Biomed. Mater. Res. 77A, 618-626.
Rao, R.D., David, K.S., 2005. Lumbar Degenerative Disorders. In: Orthopaedic Knowledge Update 8. Vol., A.R. Vaccaro, ed.^eds. AAOS, New York, pp. 539-551.
Roaf, R., 1960. A study of the mechanics of spinal injuries. J Bone Joint Surg-Br. 42, 810.
Rockoff, S.D., Sweet, E., Bleustein, J., 1969. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res. 3, 163-75.
Rolander, S.D., Blair, W.E., 1975. Deformation and fracture of the lumbar vertebral end plate. Orthop Clin North Am. 6, 75-81.
Sato, K., Kikuchi, S., Yonezawa, T., 1999. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24, 2468-74.
Schnake, K.J., Putzier, M., Haas, N.P., Kandziora, F., 2006. Mechanical concepts for disc regeneration. Eur Spine J. 15, 354-360.
Shahadi, F., Luecke, M., Preuss, M., Huegens-Penzel, M., Nestler, U., 2008. Measurement of intradiscal pressure after lumbar discectomy. Zentralbl Neurochir. 69, 87-9.
Sherman J, c.J., Griffith S, 2007. Pre-clinical evaluation of a mesh device for reparing the annulus fibrosus. Spine Arthroplasty Society (SAS7), Berlin, Germany.
Shirazi-Adl, S.A., Shrivastava, S.C., Ahmed, A.M., 1984. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 9, 120-34.
Silvers, H.R., 1988. Microsurgical versus standard lumbar discectomy. Neurosurgery. 22, 837-41.
Smith, J.W., Walmsley, R., 1951. Experimental incision of the intervertebral disc. J Bone Joint Surg Br. 33-B, 612-25.
Swartz, K.R., Trost, G.R., 2003. Recurrent lumbar disc herniation. Neurosurg Focus. 15, E10.
Viloria, B., 2002. Advances in Seal Design Technology Solve Leakage Problem. Fluid Power Journal. 7.
Wang, J.L., Tsai, Y.C., Wang, Y.H., 2007. The leakage pathway and effect of needle gauge on degree of disc injury post anular puncture: a comparative study using aged human and adolescent porcine discs. Spine 32, 1809-15.
Weis, E.B., Jr., 1975. Stresses at the lumbosacral junction. Orthop Clin North Am. 6, 83-91.
White, A.A., 3rd, Panjabi, M.M., 1990. Clinical Biomechanics of the Spine, Vol., J.B. Lippincott Company, Philadelphia.
Wilke, H.J., Neef, P., Caimi, M., Hoogland, T., Claes, L.E., 1999. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24, 755-62.
Yang, K.H., King, A.I., 1984. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9, 557-65.
Yasargil, M., 1977. Microsurgical operation of herniated lumbar disc. Adv Neurosurg. 4, 81.
Zhang, Q.H., Zhou, Y.L., Petit, D., Teo, E.C., 2009. Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression. Med Eng Phys. 31, 533-538.
Zhong, Z.C., Chen, S.H., Hung, C.H., 2009. Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng H. 223, 143-57.
陳俊勳、杜鳳齊, 2004. 黏性內流. In: 流體力學. 三民書局, 台北市, pp. 226-270.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔