(3.238.186.43) 您好!臺灣時間:2021/02/28 21:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:温仕寧
研究生(外文):Shih-Ning Wen
論文名稱:加熱對於降低以熱塑性樹脂黏合劑黏著根柱拆除時接著強度之影響
論文名稱(外文):Heating thermoplastic resin cement decreases post retention
指導教授:李士元李士元引用關係楊淑芬楊淑芬引用關係
指導教授(外文):Shyh-Yuan LeeShue-Fen Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:123
中文關鍵詞:根柱移除抗拉測試樹脂黏合劑熱性質分析玻璃轉移溫度
外文關鍵詞:post removalpull-out testresin cementthermal mechanical analysisglass transition temperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
臨床上移除牙根柱是件花費時間且損耗齒質的事,甚至可能造成牙根斷裂。本實驗的主要目的是探討加熱處理對於黏合劑性質的改變進而造成金屬根柱固位力的降低並同時監控加熱時的牙根表面溫度,研究更方便、有效移除牙根柱的方法。
選取拔下的人類單根管牙齒,根管清創修形後,進行根管充填,之後以機械方式製備根柱空間並製作金屬根柱。將牙齒隨機分為四組,每組20顆牙齒,分別以三種樹脂及一種傳統磷酸鋅黏合劑固定。其中各組一半樣本直接進行抗拔測試,另一半則是在根柱加熱後測試。加熱處理的溫度與時間則參考初步實驗的結果。另外針對熱塑性樹脂黏合劑的組別,探討加熱後回溫對金屬根柱固位性的影響。在金屬根柱加熱後以不同的測試速度進行抗拔測試,每組牙齒樣本數為10。上述所得結果以變異數分析探討各組間之差異(α=0.05)。
綜合各實驗結果顯示一、由熱機械分析儀可得到熱塑性黏合樹脂具有約70度左右之玻璃轉移溫度,以及加熱確實可以有效促使熱塑性樹脂黏合劑的軟化,但不影響其他黏合劑。二、當根柱加熱250度15秒時,牙根表面溫度仍在安全溫度內(47度),而金屬根柱表面則有明顯升溫,至少有一半超過熱塑性黏合樹脂之玻璃轉移溫度。三、熱塑性樹脂黏合劑在未加熱時黏著強度優於各組,加熱處理後所需拔除根柱力量大幅下降。另外熱固性黏合劑Panavia F則可能因為多一層接著劑介面影響造成加熱後也顯著下降,而其餘兩種黏合劑則不受熱影響。四、在熱塑性樹脂黏合劑加熱後,回溫時間愈短則根柱的黏著力越弱越容易移除,甚至牙根表面上升溫度亦愈低。
根據本實驗的結果,熱塑性樹脂黏合劑用於根柱黏合時有優異的接著強度,而在特殊人為加熱處理下即使牙根表面仍在安全範圍內,亦可有效大幅降低接著強度,使得根柱可被輕易地移除。本發現可提供臨床醫師選用根柱黏合劑時的重要參考,當然若要實際應用於臨床使用仍需更深入的研究。

Previous studies have shown that ultrasound without water cooling was efficient for removing post fixed with resin cement. This study hypothesized that heating could possibly soften thermoplastic resin cement and thus facilitate post removal.
Single-rooted human teeth with single canal were selected and sectioned at the cementoenamel junction. Endodontic treatment, post space preparation and custom casting post fabrication were performed. The roots were randomly divided into 4 groups of 20 specimens each with various luting cements, including a thermoplastic resin cement (Superbond C&B), two thermoset resin cements (Unicem and Panavia F) and a water-based zinc phosphate cement (Harvard Cement), for luting posts. Three days after post cementation, 10 specimens of each group were subjected to pull-out tests in a universal testing machine. For the rest specimens, the top of the post was heated by a heater before pull-out testing. Meanwhile, thermocouples were used to monitor the root surface temperatures. For the thermoplastic group, different test speed in pull-out tests was used to investigate effect of temperature returning to retention of posts. Data were analyzed using ANOVA and Tukey test (α=0.05).
The results revealed first, that glass transition temperature of thermoplastic resin cement from thermomechanical analyzer was about 70°C, and heating gradually transformed it from a thermoplastic mold into a viscous liquid, especially in the vicinity of their particular glass transition temperature. Second, when heater set at 250°C for 15 seconds, at last half of the post temperatures were over glass transition temperature of the thermoplastic resin cement, and the highest temperature measured on root surfaces was still under 47°C. Third, the posts luted with thermoplastic resin cement had the highest retention force of 74.1Kg±7.8 among the experiment groups (P<0.05). Pre-heating the post before pull-out testing significantly reduced the retention of thermoplastic resin luted posts to 28.36Kg±14.1 (38%). Forth, in thermoplastic resin cement group, specimen with less time of temperature returning had less post retention, and lower temperature measured on root surfaces.
In conclusion, the retention of casting post luted with thermoplastic resin cement was significantly reduced under a proper heat application on biologic tolerance temperature.

目錄
中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………3
誌謝………………………………………………………………………5
目錄………………....................................................................................6
圖表目錄…………………………………………………………………8
一、序論……………………………………………………….……….13二、文獻回顧…………………………….………………………….…16
(一) 移除根柱之相關因子……………………………………………16
(二) 移除根柱的方法及併發症………………………………………22
(三) 樹脂黏合劑之種類與介紹………………………………………27
三、 研究動機與目的…………………………………………………42
四、 (實驗一) 黏合劑之熱機械性質量測
1. 前言…………………………………………………………………44
2. 材料與方法…………………………………………...…………….46
3. 實驗結果……………………………………………………………47
4. 討論…………………………………………………………………49
五、(實驗二) 根柱加熱造成根柱與牙根表面之升溫分析
1. 前言…………………………………………………………………52
2. 材料與方法…………………………………………………………54
3. 實驗結果……………………………………………………………59
4. 討論…………………………………………………………………60
六、(實驗三) 加熱對於根柱接著強度之影響
1. 前言…………………………………………………………………62
2. 材料與方法…………………………………………………………63
3. 實驗結果……………………………………………………………67
4. 討論…………………………………………………………………69
七、(實驗四) 加熱狀態下對於以不同測試速度對以熱塑性樹脂黏合劑接著強度之影響
1. 前言…………………………………………………………………75
2. 材料與方法…………………………………………………………76
3. 實驗結果……………………………………………………………79
4. 討論…………………………………………………………………80
八、綜合討論與結論…………………………………………………..81
九、附圖………………………………………………………………..87
十、 附表………………………………………………………………106
十一、 參考文獻………………………………………………………116

1. Cohen S, Hargreaves KM. Cohen's Pathways of the pulp 9th ed. St. Louis: Mosby Elsevier; 2006.
2. Randow K, Glantz PO. On cantilever loading of vital and non-vital teeth. An experimental clinical study. Acta Odontol Scand 1986;44(5):271-7.
3. Abbott PV. Analysis of a referral-based endodontic practice: Part 2. Treatment provided. J Endod 1994;20(5):253-7.
4. Cheung W. A review of the management of endodontically treated teeth. Post, core and the final restoration. J Am Dent Assoc 2005;136(5):611-9.
5. Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review. J Endod 2004;30(5):289-301.
6. Rosenstiel S, Land M, Fujimoto J. Contemporary Fixed Prosthodontics. 4th ed. St. Louis Mosby Elsevier; 2006.
7. Duncan JP, Pameijer CH. Retention of parallel-sided titanium posts cemented with six luting agents: an in vitro study. J Prosthet Dent 1998;80(4):423-8.
8. Nissan J, Dmitry Y, Assif D. The use of reinforced composite resin cement as compensation for reduced post length. J Prosthet Dent 2001;86(3):304-8.
9. Habib B, von Fraunhofer JA, Driscoll CF. Comparison of two luting agents used for the retention of cast dowel and cores. J Prosthodont 2005;14(3):164-9.
10. Ertugrul HZ, Ismail YH. An in vitro comparison of cast metal dowel retention using various luting agents and tensile loading. J Prosthet Dent 2005;93(5):446-52.
11. Schwartz RS, Murchison DF, Walker WA, 3rd. Effects of eugenol and noneugenol endodontic sealer cements on post retention. J Endod 1998;24(8):564-7.
12. Garrido AD, Fonseca TS, Alfredo E, Silva-Sousa YT, Sousa-Neto MD. Influence of ultrasound, with and without water spray cooling, on removal of posts cemented with resin or zinc phosphate cements. J Endod 2004;30(3):173-6.
13. Sheridan JJ, Brawley G, Hastings J. Electrothermal debracketing. Part I. An in vitro study. Am J Orthod 1986;89(1):21-7.
14. Sheridan JJ, Brawley G, Hastings J. Electrothermal debracketing. Part II. An in vivo study. Am J Orthod 1986;89(2):141-5.
15. Crooks M, Hood J, Harkness M. Thermal debonding of ceramic brackets: an in vitro study. Am J Orthod Dentofacial Orthop 1997;111(2):163-72.
16. Bergeron BE, Murchison DF, Schindler WG, Walker WA, 3rd. Effect of ultrasonic vibration and various sealer and cement combinations on titanium post removal. J Endod 2001;27(1):13-7.
17. Yoshida T, Gomyo S, Itoh T, Shibata T, Sekine I. An experimental study of the removal of cemented dowel-retained cast cores by ultrasonic vibration. J Endod 1997;23(4):239-41.
18. Ruddle CJ. Nonsurgical retreatment. J Endod 2004;30(12):827-45.
19. Whitworth JM, Walls AW, Wassell RW. Crowns and extra-coronal restorations: endodontic considerations: the pulp, the root-treated tooth and the crown. Br Dent J 2002;192(6):315-20, 23-7.
20. Burns DA, Krause WR, Douglas HB, Burns DR. Stress distribution surrounding endodontic posts. J Prosthet Dent 1990;64(4):412-8.
21. Felton DA, Webb EL, Kanoy BE, Dugoni J. Threaded endodontic dowels: effect of post design on incidence of root fracture. J Prosthet Dent 1991;65(2):179-87.
22. Butz F, Lennon AM, Heydecke G, Strub JR. Survival rate and fracture strength of endodontically treated maxillary incisors with moderate defects restored with different post-and-core systems: an in vitro study. Int J Prosthodont 2001;14(1):58-64.
23. Ibrahim H, El-Mowafy O, Brown JW. Radiopacity of nonmetallic root canal posts. Int J Prosthodont 2006;19(1):101-2.
24. Kleier DJ, Shibilski K, Averbach RE. Radiographic appearance of titanium posts in endodontically treated teeth. J Endod 1999;25(2):128-31.
25. Zillich RM, Corcoran JF. Average maximum post lengths in endodontically treated teeth. J Prosthet Dent 1984;52(4):489-91.
26. Kvist T, Rydin E, Reit C. The relative frequency of periapical lesions in teeth with root canal-retained posts. J Endod 1989;15(12):578-80.
27. Dominici JT, Clark S, Scheetz J, Eleazer PD. Analysis of heat generation using ultrasonic vibration for post removal. J Endod 2005;31(4):301-3.
28. Tay FR, Loushine RJ, Lambrechts P, Weller RN, Pashley DH. Geometric factors affecting dentin bonding in root canals: a theoretical modeling approach. J Endod 2005;31(8):584-9.
29. Gaffney JL, Lehman JW, Miles MJ. Expanded use of the ultrasonic scaler. J Endod 1981;7(5):228-9.
30. Berbert A, Filho MT, Ueno AH, Bramante CM, Ishikiriama A. The influence of ultrasound in removing intraradicular posts. Int Endod J 1995;28(1):54-6.
31. Johnson WT, Leary JM, Boyer DB. Effect of ultrasonic vibration on post removal in extracted human premolar teeth. J Endod 1996;22(9):487-8.
32. Buoncristiani J, Seto BG, Caputo AA. Evaluation of ultrasonic and sonic instruments for intraradicular post removal. J Endod 1994;20(10):486-9.
33. Gomes AP, Kubo CH, Santos RA, Santos DR, Padilha RQ. The influence of ultrasound on the retention of cast posts cemented with different agents. Int Endod J 2001;34(2):93-9.
34. Gutmann JL, Dumsha TC, Lovdahl PE, Hovland EJ. Problem solving in endodontics. 3rd ed. St. Louis: Mosby Elsevier; 1997.
35. Abbott PV. Incidence of root fractures and methods used for post removal. Int Endod J 2002;35(1):63-7.
36. Castrisos TV, Palamara JE, Abbott PV. Measurement of strain on tooth roots during post removal with the Eggler post remover. Int Endod J 2002;35(4):337-44.
37. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50(1):101-7.
38. Lipski M, Debicki M, Drozdzik A. Effect of different water flows on root surface temperature during ultrasonic removal of posts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110(3):395-400.
39. Huttula AS, Tordik PA, Imamura G, Eichmiller FC, McClanahan SB. The effect of ultrasonic post instrumentation on root surface temperature. J Endod 2006;32(11):1085-7.
40. Budd JC, Gekelman D, White JM. Temperature rise of the post and on the root surface during ultrasonic post removal. Int Endod J 2005;38(10):705-11.
41. Horan BB, Tordik PA, Imamura G, Goodell GG. Effect of dentin thickness on root surface temperature of teeth undergoing ultrasonic removal of posts. J Endod 2008;34(4):453-5.
42. Tyas MJ, Burrow MF. Adhesive restorative materials: a review. Aust Dent J 2004;49(3):112-21; quiz 54.
43. Nakabayashi N, Watanabe A, Arao T. A tensile test to facilitate identification of defects in dentine bonded specimens. J Dent 1998;26(4):379-85.
44. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955;34(6):849-53.
45. Fusayama T, Nakamura M, Kurosaki N, Iwaku M. Non-pressure adhesion of a new adhesive restorative resin. J Dent Res 1979;58(4):1364-70.
46. Fusayama T. Total etch technique and cavity isolation. J Esthet Dent 1992;4(4):105-9.
47. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res 1982;16(3):265-73.
48. Kanca J, 3rd. Improving bond strength through acid etching of dentin and bonding to wet dentin surfaces. J Am Dent Assoc 1992;123(9):35-43.
49. Bouillaguet S, Gysi P, Wataha JC, Ciucchi B, Cattani M, Godin C, et al. Bond strength of composite to dentin using conventional, one-step, and self-etching adhesive systems. J Dent 2001;29(1):55-61.
50. Armstrong SR, Vargas MA, Fang Q, Laffoon JE. Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self-etch 2-step, and a self-etch 1-step dentin bonding system through 15-month water storage. J Adhes Dent 2003;5(1):47-56.
51. Chigira H, Koike T, Hasegawa T, Itoh K, Wakumoto S, Hayakawa T. Effect of the self etching dentin primers on the bonding efficacy of a dentin adhesive. Dent Mater J 1989;8(1):86-92.
52. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 2003;28(3):215-35.
53. Inoue S, Vargas MA, Abe Y, Yoshida Y, Lambrechts P, Vanherle G, et al. Microtensile bond strength of eleven contemporary adhesives to dentin. J Adhes Dent 2001;3(3):237-45.
54. Cheong C, King NM, Pashley DH, Ferrari M, Toledano M, Tay FR. Incompatibility of self-etch adhesives with chemical/dual-cured composites: two-step vs one-step systems. Oper Dent 2003;28(6):747-55.
55. 鍾國雄. 牙科材料學. 台北市: 合記圖書出版社; 2001.
56. Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: A review of the current literature. J Prosthet Dent 1998;80(3):280-301.
57. Van Meerbeek B, Van Landuyt K, De Munck J, Hashimoto M, Peumans M, Lambrechts P, et al. Technique-sensitivity of contemporary adhesives. Dent Mater J 2005;24(1):1-13.
58. Li ZC, White SN. Mechanical properties of dental luting cements. J Prosthet Dent 1999;81(5):597-609.
59. Chang JC, Hurst TL, Hart DA, Estey AW. 4-META use in dentistry: a literature review. J Prosthet Dent 2002;87(2):216-24.
60. Nakabayashi N. Adhesive bonding with 4-META. Oper Dent 1992;Suppl 5:125-30.
61. Clark SA, Gordon PH, McCabe JF. An ex vivo investigation to compare orthodontic bonding using a 4-META-based adhesive or a composite adhesive to acid-etched and sandblasted enamel. J Orthod 2003;30(1):51-8; discussion 23.
62. 許智淵、劉英麟. The reactivities of nanoscale colloidal silica toward epoxy compounds and their applications. [化學工程學系, 碩士學位論文: 中原大學; 2004.
63. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007;28(26):3757-85.
64. Yoshida K, Funaki K, Tanagawa M, Matsumura H, Tanaka T, Atsuta M. Properties of Commercially Available Luting Agents. J Jpn Prosthodont Soc 1995;39(1):35-40.
65. Pace LL, Hummel SK, Marker VA, Bolouri A. Comparison of the flexural strength of five adhesive resin cements. J Prosthodont 2007;16(1):18-24.
66. Piemjai M, Arksornnukit M. Compressive fracture resistance of porcelain laminates bonded to enamel or dentin with four adhesive systems. J Prosthodont 2007;16(6):457-64.
67. Komine F, Tomic M, Gerds T, Strub JR. Influence of different adhesive resin cements on the fracture strength of aluminum oxide ceramic posterior crowns. J Prosthet Dent 2004;92(4):359-64.
68. Sen D, Nayir E, Pamuk S. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel. J Prosthet Dent 2000;84(5):561-6.
69. Yang B, Ludwig K, Adelung R, Kern M. Micro-tensile bond strength of three luting resins to human regional dentin. Dent Mater 2006;22(1):45-56.
70. Hikita K, Van Meerbeek B, De Munck J, Ikeda T, Van Landuyt K, Maida T, et al. Bonding effectiveness of adhesive luting agents to enamel and dentin. Dent Mater 2007;23(1):71-80.
71. Piwowarczyk A, Lauer HC, Sorensen JA. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials. J Prosthet Dent 2004;92(3):265-73.
72. Peumans M, De Munck J, Van Landuyt K, Poitevin A, Lambrechts P, Van Meerbeek B. Two-year clinical evaluation of a self-adhesive luting agent for ceramic inlays. J Adhes Dent 2010;12(2):151-61.
73. Taschner M, Frankenberger R, Garcia-Godoy F, Rosenbusch S, Petschelt A, Kramer N. IPS Empress inlays luted with a self-adhesive resin cement after 1 year. Am J Dent 2009;22(1):55-9.
74. Piwowarczyk A, Schick K, Lauer HC. Metal-ceramic crowns cemented with two luting agents: short-term results of a prospective clinical study. Clin Oral Investig 2011.
75. Anusavice KJ, Phillips RW. Phillips’science of dental materials. 11th ed. St. Louis: Mosby Elsevier; 2003.
76. Rueggeberg FA, Caughman WF, Curtis JW, Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994;19(1):26-32.
77. Sanares AM, Itthagarun A, King NM, Tay FR, Pashley DH. Adverse surface interactions between one-bottle light-cured adhesives and chemical-cured composites. Dent Mater 2001;17(6):542-56.
78. Braga RR, Cesar PF, Gonzaga CC. Mechanical properties of resin cements with different activation modes. J Oral Rehabil 2002;29(3):257-62.
79. Koishi Y, Tanoue N, Atsuta M, Matsumura H. Influence of visible-light exposure on colour stability of current dual-curable luting composites. J Oral Rehabil 2002;29(4):387-93.
80. 陳文照、曾春風、游信和譯. 材料科學與工程導論. 臺北縣五股鄉: 高立出版社; 2005.
81. Sperling LH. Introduction to physical polymer science. . 4th ed. Hoboken, New Jersey: John wiley and sons; 2006.
82. Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent 1992;67(3):325-7.
83. Irie M, Suzuki K. Current luting cements: marginal gap formation of composite inlay and their mechanical properties. Dent Mater 2001;17(4):347-53.
84. Yang HS, Lang LA, Guckes AD, Felton DA. The effect of thermal change on various dowel-and-core restorative materials. J Prosthet Dent 2001;86(1):74-80.
85. Rueggeberg FA, Lockwood P. Thermal debracketing of orthodontic resins. Am J Orthod Dentofacial Orthop 1990;98(1):56-65.
86. Rueggeberg FA, Maher FT, Kelly MT. Thermal properties of a methyl methacrylate-based orthodontic bonding adhesive. Am J Orthod Dentofacial Orthop 1992;101(4):342-9.
87. Toparli M, Aykul H, Sasaki S. Temperature and thermal stress analysis of a crowned maxillary second premolar tooth using three-dimensional finite element method. J Oral Rehabil 2003;30(1):99-105.
88. Toparli M, Sasaki S. Finite element analysis of the temperature and thermal stress in a postrestored tooth. J Oral Rehabil 2003;30(9):921-6.
89. Tunc EP. Finite element analysis of heat generation from different light-polymerization sources during cementation of all-ceramic crowns. J Prosthet Dent 2007;97(6):366-74.
90. Lin CL, Chang YH, Lin YF. Combining structural-thermal coupled field FE analysis and the Taguchi method to evaluate the relative contributions of multi-factors in a premolar adhesive MOD restoration. J Dent 2008;36(8):626-36.
91. Fenner DN, Robinson PB, Cheung PM. Three-dimensional finite element analysis of thermal shock in a premolar with a composite resin MOD restoration. Med Eng Phys 1998;20(4):269-75.
92. Atrizadeh F, Kennedy J, Zander H. Ankylosis of teeth following thermal injury. J Periodontal Res 1971;6(3):159-67.
93. Molyvdas I, Zervas P, Lambrianidis T, Veis A. Periodontal tissue reactions following root canal obturation with an injection-thermoplasticized gutta-percha technique. Endod Dent Traumatol 1989;5(1):32-7.
94. Gutmann JL, Rakusin H, Powe R, Bowles WH. Evaluation of heat transfer during root canal obturation with thermoplasticized gutta-percha. Part II. In vivo response to heat levels generated. J Endod 1987;13(9):441-8.
95. Tritt TM. Thermal Conductivity: Theory, Properties, and Applications. . 1st ed. New York, NY: Springer; 2004.
96. J. Blumm AL, B. Niedrig and R. Campbell. Measurement of Selected Thermophysical Properties of the NPL Certified Reference Material Stainless Steel 310. International Journal of Thermophysics 2007;28(2):674-82.
97. Satterthwaite JD, Stokes AN, Frankel NT. Potential for temperature change during application of ultrasonic vibration to intra-radicular posts. Eur J Prosthodont Restor Dent 2003;11(2):51-6.
98. Gu XH, Mao CY, Liang C, Wang HM, Kern M. Does endodontic post space irrigation affect smear layer removal and bonding effectiveness? Eur J Oral Sci 2009;117(5):597-603.
99. Gaston BA, West LA, Liewehr FR, Fernandes C, Pashley DH. Evaluation of regional bond strength of resin cement to endodontic surfaces. J Endod 2001;27(5):321-4.
100. Mendoza DB, Eakle WS. Retention of posts cemented with various dentinal bonding cements. J Prosthet Dent 1994;72(6):591-4.
101. Yang B, Adelung R, Ludwig K, Bossmann K, Pashley DH, Kern M. Effect of structural change of collagen fibrils on the durability of dentin bonding. Biomaterials 2005;26(24):5021-31.
102. Altintas S, Eldeniz AU, Usumez A. Shear bond strength of four resin cements used to lute ceramic core material to human dentin. J Prosthodont 2008;17(8):634-40.
103. Barclay CW, Boyle EL, Williams R, Marquis PM. The effect of thermocycling on five adhesive luting cements. J Oral Rehabil 2002;29(6):546-52.
104. De Munck J, Vargas M, Van Landuyt K, Hikita K, Lambrechts P, Van Meerbeek B. Bonding of an auto-adhesive luting material to enamel and dentin. Dent Mater 2004;20(10):963-71.
105. Hagge MS, Wong RD, Lindemuth JS. Retention strengths of five luting cements on prefabricated dowels after root canal obturation with a zinc oxide/eugenol sealer: 1. Dowel space preparation/cementation at one week after obturation. J Prosthodont 2002;11(3):168-75.
106. Chen HL, Zhuo TS, Lai YL, Yeung TC, Lee SY. In Vitro Strain Measurement around Dental Implant in Removing cement-retained Crowns. Chinese Dental Journal 2006;25(4):263-70.
107. Lee CH, Chien AT, Yen MH, Lin KF. Poly(methyl acrylate-co-methyl methacrylate)/montmorillonite nanocomposites fabricated by soap-free emulsion polymerization. J Polym Res 2008;15(4):331-6.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔