(44.192.112.123) 您好!臺灣時間:2021/02/28 05:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡慧心
研究生(外文):Hui-Hsin Hu
論文名稱:人類胎兒大腦型態變化發展
論文名稱(外文):Morphological Changes in Developing Human Fetal Brains
指導教授:吳育德
指導教授(外文):Yu-Te Wu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:胎兒發育超解析法型態人類
外文關鍵詞:FetusDevelopmentSuper-resolutionMorphologyHuman
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於核磁共振造影技術的進步,現代醫學可利用此非侵入式的磁振影像來評估母體內人類胎兒大腦的發展,提供了關於大腦皺摺發展的珍貴訊息。然而,過去磁振影像相關研究多以定性的方式來觀察胎腦皺褶的發展,定量分析則尚未廣泛應用。因此,本論文著重於以多樣化的定量方法來分析成長中的胎腦磁振影像,並借由這些定量結果,深入探討關於大腦皮質在皺褶發育過程中的重要訊息。
本論文主要分成三個部分。
第一部分為探討正常胎兒大腦皺摺和體積發展過程中,是否有成長速度上的局部差異。在這個部分中,作者提出兩種可能的方法來合理地分區連續的二維胎兒大腦影像。我們發現不同區域的皮質皺褶有相同的成長速率,這顯示了不同區域的皮質層隨著時間有相同的變化量。相反的,大腦體積的發展呈現局部性的差異,前額葉區和頂顳葉區成長速率比其它區域快,這個結果是由基底核的體積成長所造成的。這個分區量化的訊息顯示對於量測大腦皺摺量,腦體積不是一個很有意義的參數,而皮質層的大小可能和腦皺褶有較直接的關係。
在第二部份中,作者將胎腦皺摺的定量分析擴展至三維立體腦的計算。我們利用超解析重組法(super-resolution reconstruction)來重組出胎兒的三維立體腦,並提出一個新的分割大腦腦區的方法。研究結果顯示型態指標(shap index)可以正確地顯示不同的皺褶型態,並在枕葉區有較其它區域更快速的發展。這表示皮質表面的形狀(shape)是一個新的方向可用來評估大腦皺摺的發展。
在第三部分中,本研究闡明大腦皮質之複雜度與形狀之差異,並發現相對複雜度而言,大腦皮質腦迴頂端之形狀與神經軸索密度有較高度的相關性。這結果強調在分析大腦皮質發展時,區分其複雜度與形狀之重要性。
本論文提供不同的量化方式應用於母體內胎兒大腦磁振影像,建立正常大腦皺摺發展過程的模型,未來可推廣應用至患有神經系統成長相關疾病的胎兒,提供更準確合理的方式來評估大腦發育的狀況。

Magnetic resonance (MR) imaging is a noninvasive and safe tool for assessing the development of fetal brains in utero. Fetal MR brain images provide important information about the maturation of cortical folding. In the past, most of neuroimaging studies investigated the fetal folding development via qualitative analyses. However, the quantitative analysis of fetal brains is quite limited. This thesis aims at using various methods to quantify the folding development of fetal brains, and gives insights into the development of fetal brains.
This thesis is divided into three major sections.
In the first section, this thesis investigates the regional difference of growth rate between the fetal gyrification and cerebral volume. In this section, the authors propose two parcellations that reasonably dissect a series of two-dimensional fetal brain images. Our finding shows the similar growth rates of fetal gyrification across brain areas, suggesting a similar uniformity of changes in size of the cortical sheet in these areas over time. On the contrary, our results show that the regional difference in the development of cerebral volume is stemmed from the enlargement of deep brain nuclei. These results suggest that the cerebral volume is not a relevant parameter to measure in relation to gyrification, and that the size of the cortical sheet is more likely to be directly related to cortical folding.
In the second section, the author extends the quantification of fetal cortical folding from two-dimensionally to three-dimensionally. This study uses the super-resolution technique to reconstruct the three-dimensional fetal brain surfaces, and provides a novel parcellation on theses brain surfaces. The results of our study show that the shape index can accurately capture the distinct shapes of cortical folding and presents a faster growth in occipital lobe than other lobes. This suggests that cortical shape is a new a perspective in the assessment of brain development.
In the third section, this thesis clarifies the difference between the complexity and the shape of cerebral cortex. Out finding shows that the shape of gyral crown is correlated to the fiber density more than the cortical complexity does. This supports the importance of dividing the complexity and the shape in the assessment of brain development.
This thesis provides the important quantitative results that combine distinct morphological indices with fetal MR brain images, and establishes the growth model of normally developing brains. These results may be helpful in the developmental assessment of fetuses with neuro-developmental disorders in the future.

CONTENTS I
LIST OF FIGURES V
LIST OF TABLES VIII
致謝 IX
ENGLISH ABSTRACT X
中文摘要 XII
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 AIM OF DISSERTATION 3
1.3 OVERVIEW 3
1.4 FETAL BRAIN RECONSTRUCTION: SUPER-RESOLUTION 4
CHAPTER 2 MORPHOLOGICAL REGIONALIZATION USING FETAL MAGNETIC RESONANCE (MR) IMAGES OF NORMAL DEVELOPING BRAINS 8
2.1 ABSTRACT 8
2.2 INTRODUCTION 9
2.3 MATERIALS AND METHODS 11
2.3.1 Subjects 11
2.3.2 Image acquisition 12
2.3.3 Semiautomatic cerebrum extraction 13
2.3.4 Parcellation of fetal brain 14
2.3.5 Morphological indices for the assessment of brain development 16
2.3.6 Statistical analyses 18
2.4 RESULTS 19
2.5 DISCUSSION 22
2.5.1 Comparable growth rate in cortical folding addressed by the tension-based theory of morphogenesis 24
2.5.2 The age effect on cerebral volume and gyrification in utero 25
2.6 CONCLUSION 26
CHAPTER 3 REGIONAL QUANTIFICATION OF DEVELOPING HUMAN CORTICAL SHAPE USING A THREE-DIMENSIONAL SURFACE-BASED MAGNETIC RESONANCE IMAGING ANALYSIS IN UTERO 28
3.1 ABSTRACT 28
3.2 INTRODUCTION 29
3.3 MATERIALS AND METHOD 31
3.3.1 Subjects 31
3.3.2 Neuroimaging 32
3.3.3 Reconstruction of fetal brain image with 3D coherence 33
3.3.4 Fetal brain image extraction 34
3.3.5 Fetal brain parcellation 36
3.3.6 Quantification of cortical surface shape by shape index (SI) 38
3.3.7 Statistical analysis 41
3.4 RESULTS 43
3.4.1 Surface shape encoding by shape index 44
3.4.2 Global shape patterns between sulci and gyri 44
3.4.3 Regional shape patterns across four brain lobes 45
3.4.4 Absolute SI frequencies at particular GAs 47
3.4.5 Correlation between SI and GA for 9 shape scales 48
3.5 DISCUSSION 49
3.5.1 Limitations and technical remarks 51
3.6 CONCLUSION 53
3.7 APPENDIX: NINE SCALES OF SHAPE INDEX 53
CHAPTER 4 BRAIN COMPLEXITY AND SHAPE: PRELIMINARY RESULTS 55
4.1 INTRODUCTION 55
4.2 METHODS 58
4.3 RESULTS 65
4.3.1 Complexity-shape analysis v.s. cerebral volume (Vol) 65
4.3.2 Complexity-shape analysis v.s. fiber density (FD) 67
4.4 SUMMARY 69
CHAPTER 5 CONCLUSION 71
5.1 CONTRIBUTION OF DISSERTATION 71
5.2 FUTURE WORK 71
REFERENCES 75
PUBLICATIONS 80


Armstrong, E., Curtis, M., Buxhoeveden, D.P., Fregoe, C., Zilles, K., Casanova, M.F. & McCarthy, W.F. (1991) Cortical Gyrification in the Rhesus Monkey: A Test of the Mechanical Folding Hypothesis. Cerebral Cortex, 1, 426-432.

Armstrong, E., Schleicher, A., Omran, H., Curtis, M. & Zilles, K. (1995) The Ontogeny of Human Gyrification. Cerebral Cortex, 5, 56-63.

Awate, S.P., Yushkevich, P.A., Song, Z., Licht, D.J. & Gee, J.C. (2010) Cerebral cortical folding analysis with multivariate modeling and testing: Studies on gender differences and neonatal development. Neuroimage, 53, 450-459.

Aylward, E.H., Minshew, N.J., Field, K., Sparks, B.F. & Singh, N. (2002) Effects of age on brain volume and head circumference in autism. Neurology, 59, 175-183.

Barkovich, A.J., Ferriero, D.M., Barr, R.M., Gressens, P., Dobyns, W.B., Truwit, C.L. & Evrard, P. (1998) Microlissencephaly: a heterogeneous malformation of cortical development. Neuropediatrics, 29, 113-119.

Batchelor, P.G., Smith, A.D.C., Hill, D.L.G., Hawkes, D.J., Cox, T.C.S. & Dean, A.F. (2002) Measures of Folding Applied to the Development of the Human Fetal Brain. IEEE TRANSACTIONS ON MEDICAL IMAGING, 21, 953.

Bonnici, H.M., William, T., Moorhead, J., Stanfield, A.C., Harris, J.M., Owens, D.G., Johnstone, E.C. & Lawrie, S.M. (2007) Pre-frontal lobe gyrification index in schizophrenia, mental retardation and comorbid groups: an automated study. Neuroimage, 35, 648-654.

Canny, J. (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698.

Chi, J.G., Dooling, E.C. & Gilles, F.H. (1977) Gyral development of the human brain. Annals of Neurology, 1, 86-93.

Corbett-Detig, J., Habas, P.A., Scott, J.A., Kim, K., Rajagopalan, V., McQuillen, P.S., Barkovich, A.J., Glenn, O.A. & Studholme, C. (2011) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct, 215, 255-263.

Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S.V., Warfield, S.K., Mangin, J.F. & Huppi, P.S. (2008a) Primary cortical folding in the human newborn: an early marker of later functional development. Brain, 131, 2028-2041.

Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S.V., Borradori-Tolsa, C., Mangin, J.F. & Huppi, P.S. (2008b) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex, 18, 1444-1454.

Encha-Razavi, F. & Sonigo, P. (2003) Features of the developing brain. Child's Nervous System, 19, 426-428.

Faul, F., Erdfelder, E., Lang, A. & Buchner, A. (2007) G^* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. BEHAVIOR RESEARCH METHODS, 39, 175.

Garel, C. (2004) MRI of the Fetal Brain. Springer Berlin, Heidelberg, New York.

Gilmore, J.H., Lin, W., Prastawa, M.W., Looney, C.B., Vetsa, Y.S.K., Knickmeyer, R.C., Evans, D.D., Smith, J.K., Hamer, R.M. & Lieberman, J.A. (2007) Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain. Journal of Neuroscience, 27, 1255.

Gimenez, M., Junque, C., Vendrell, P., Narberhaus, A., Bargallo, N., Botet, F. & Mercader, J.M. (2006) Abnormal orbitofrontal development due to prematurity. Neurology, 67, 1818.

Gonzales, R.C. & Woods, R.E. (2001) Digital image processing. Prentice Hall, New Jersey.

Grossman, R., Hoffman, C., Mardor, Y. & Biegon, A. (2006) Quantitative MRI measurements of human fetal brain development in utero. Neuroimage, 33, 463-470.

Guo, W.Y. & Wong, T.T. (2003) Screening of fetal CNS anomalies by MR imaging. Child's Nervous System, 19, 410-414.

Habas, P.A., Kim, K., Corbett-Detig, J.M., Rousseau, F., Glenn, O.A., Barkovich, A.J. & Studholme, C. (2010a) A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage, 53, 460-470.

Habas, P.A., Kim, K., Rousseau, F., Glenn, O.A., Barkovich, A.J. & Studholme, C. (2010b) Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum Brain Mapp, 31, 1348-1358.

Harris, J.M., Moorhead, T.W.J., Miller, P., McIntosh, A.M., Bonnici, H.M., Owens, D.G.C., Johnstone, E.C. & Lawrie, S.M. (2007) Increased Prefrontal Gyrification in a Large High-Risk Cohort Characterizes Those Who Develop Schizophrenia and Reflects Abnormal Prefrontal Development. Biological Psychiatry, 62, 722-729.

Hilgetag, C.C. & Barbas, H. (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl), 210, 411-417.

Hu, H.H., Guo, W.Y., Chen, H.Y., Wang, P.S., Hung, C.I., Hsieh, J.C. & Wu, Y.T. (2009) Morphological regionalization using fetal magnetic resonance images of normal developing brains. Eur J Neurosci, 29, 1560-1567.

Jiang, S., Xue, H., Glover, A., Rutherford, M., Rueckert, D. & Hajnal, J.V. (2007) MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Trans Med Imaging, 26, 967-980.

Kim, K., Habas, P.A., Rousseau, F., Glenn, O.A., Barkovich, A.J. & Studholme, C. (2010) Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imaging, 29, 146-158.

Koenderink, J.J. & van Doorn, A.J. (1992) Surface shape and curvature scales. Image and Vision Computing, 10, 557-565.

Li, K., Guo, L., Li, G., Nie, J., Faraco, C., Cui, G., Zhao, Q., Miller, L.S. & Liu, T. (2010) Gyral folding pattern analysis via surface profiling. Neuroimage, 52, 1202-1214.

Luders, E., Thompson, P.M., Narr, K.L., Toga, A.W., Jancke, L. & Gaser, C. (2006) A curvature-based approach to estimate local gyrification on the cortical surface. Neuroimage, 29, 1224-1230.

Magnotta, V.A., Andreasen, N.C., Schultz, S.K., Harris, G., Cizadlo, T., Heckel, D., Nopoulos, P. & Flaum, M. (1999) Quantitative In Vivo Measurement of Gyrification in the Human Brain: Changes Associated with Aging. Cerebral Cortex, 9, 151-160.

Nishida, M., Makris, N., Kennedy, D.N., Vangel, M., Fischl, B., Krishnamoorthy, K.S., Caviness, V.S. & Grant, P.E. (2006) Detailed semiautomated MRI based morphometry of the neonatal brain: Preliminary results. Neuroimage, 32, 1041-1049.

Park, S., Park, M. & Kang, M. (2003) Super-Resolution Image Reconstruction: A Technical Overview. IEEE Signal Processing Magazine, 20, 21-36.

Prayer, D., Kasprian, G., Krampl, E., Ulm, B., Witzani, L., Prayer, L. & Brugger, P.C. (2006) MRI of normal fetal brain development. European journal of radiology, 57, 199-216.

Rajagopalan, V., Scott, J., Habas, P.A., Kim, K., Corbett-Detig, J., Rousseau, F., Barkovich, A.J., Glenn, O.A. & Studholme, C. (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci, 31, 2878-2887.

Rodriguez-Carranza, C.E., Mukherjee, P., Vigneron, D., Barkovich, J. & Studholme, C. (2008) A framework for in vivo quantification of regional brain folding in premature neonates. Neuroimage, 41, 462-478.

Rousseau, F., Glenn, O.A., Iordanova, B., Rodriguez-Carranza, C., Vigneron, D.B., Barkovich, J.A. & Studholme, C. (2006) Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol, 13, 1072-1081.

Stanfield, A.C., Moorhead, T.W.J., Harris, J.M., Owens, D.G.C., Lawrie, S.M. & Johnstone, E.C. (2008) Increased Right Prefrontal Cortical Folding in Adolescents at Risk of Schizophrenia for Cognitive Reasons. Biological Psychiatry, 63, 80-85.

Thirion, J.P. & Gourdon, A. (1993) The marching lines algorithm: new results and proofs. Institut National de Recherche en Informatique et en Automatique.

Thompson, P.M., Schwartz, C., Lin, R.T., Khan, A.A. & Toga, A.W. (1996) Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain. Journal of Neuroscience, 16, 4261-4274.

Van Essen, D.C. (1997a) A tension-based theory of morphogenesis and compact wiring in the central nervous system. NATURE-LONDON-, 313-318.

Van Essen, D.C. (1997b) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313-318.

Van Essen, D.C. & Drury, H.A. (1997) Structural and functional analyses of human cerebral cortex using a surface-based atlas. Journal of Neuroscience, 17, 7079.

White, T., Andreasen, N.C., Nopoulos, P. & Magnotta, V. (2003a) Gyrification abnormalities in childhood- and adolescent-onset schizophrenia. Biol Psychiatry, 54, 418-426.

White, T., Andreasen, N.C., Nopoulos, P. & Magnotta, V. (2003b) Gyrification abnormalities in childhood-and adolescent-onset schizophrenia. Biological Psychiatry, 54, 418-426.

White, T., Su, S., Schmidt, M., Kao, C.Y. & Sapiro, G. (2010) The development of gyrification in childhood and adolescence. Brain Cogn, 72, 36-45.

Zilles, K., Armstrong, E., Schleicher, A. & Kretschmann, H.J. (1988) The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology, 179, 173-179.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔