跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖家祥
研究生(外文):Jia-Siang Liao
論文名稱:以小鼠微膠細胞BV-2研究多重亞甲基間隔脂肪酸的生物活性
論文名稱(外文):Using murine microglial BV-2 cells to study biological properties of non-methylene-interrupted fatty acids
指導教授:莊路德
指導教授(外文):Lu-Te Chuang
學位類別:碩士
校院名稱:元培科技大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:131
中文關鍵詞:非亞甲基區隔脂肪酸發炎反應微膠細胞MAPK
外文關鍵詞:Non-methylene-interrupted fatty acids (NMIFA)inflammatorymicrogliaMAPK
相關次數:
  • 被引用被引用:1
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
非亞甲基區隔脂肪酸 (non-methylene-interrupted fatty acids; NMIFA) 是一群存在於裸子植物種子內的罕見多元不飽和脂肪酸 (polyunsaturated fatty acid; PUFA)。由於NMIFA的價格昂貴且不易取得,以至於目前缺乏NMIFA代謝或生物活性的相關研究。先前的實驗結果顯示NMIFA具有抗發炎的功效,因此我們假設經由神經膠細胞攝取的NMIFA也能抑制神經發炎反應與調節生化介質的釋放。有鑑於此,我們先從竹柏種子中萃取sciadonic acid (SCA) 或以化學反應合成D7-eicosatrienoic acid (D7-ETrA),再以矽膠管柱層析來分離與純化NMIFA;之後,利用脂多醣 (lipopolysaccharide; LPS) 刺激小鼠微膠細胞 BV-2 株的模型,來檢視pinolenic acid (PNA)、D7-ETrA 與SCA 可否經由代謝影響細胞內生化反應並抑制神經發炎反應。研究結果指出,PNA 可經由碳鏈加長作用轉變為 D7-ETrA;同時,在管柱層析的分離後,新合成的 D7-ETrA 與萃取出的 SCA可達98% 的高純度。當微膠細胞培養於添加PNA、D7-ETrA或 SCA的培養基,這三種NMIFA明顯地被細胞攝入,其中以 D7-ETrA最為顯著;同時NMIFA均能改變磷脂質脂肪酸組成並減少花生四烯酸 (arachidonic acid; AA) 的比例。在抗發炎活性的測試上,隨著濃度的增加,NMIFA皆能顯著地抑制一氧化氮 (nitric oxide; NO)、前列腺素 (prostaglandin E2; PGE2)、介白素-6 (interleuikin; IL-6) 與腫瘤壞死因子-a(tumor necrosis factor-a; TNF-a) 的生成;NMIFA在誘發性一氧化碳生成酶 (inducible nitric oxide synthase; iNOS)、第二型環氧酶 (type-2 cyclooxygenase; COX-2)、IL-6及TNF-a 的蛋白質或基因表現上也有顯著的抑制效果。進一步探討NMIFA對發炎訊息路徑mitogen-activated protein kinases (MAPK) 的可能影響,我們發現NMIFA能抑制 c-Jun N-terminal kinases (JNK) 訊息路徑,但對p38 MAPK (p38) 與extracellular signal-regulated kinases (ERK) 路徑卻有增加的趨勢,這兩種訊息的增加可能與提高神經保護因子及抗氧化酵素有關。總而言之, 三種NMIFA皆能被微膠細胞攝入而改變細胞磷脂質的脂肪酸組成,並可能藉由改變 MAPK 細胞訊
息傳導而調控發炎介質生成的基因表現。

Non-methylene-interrupted fatty acids (NMIFA) is a group of rare polyunsaturated fatty acid (PUFA) mainly found in gymnosperms seeds. Howver, D7-ETrA is not commercial available due to high production/ purification cost and limited sources, and few studies have been conducted to explore possible biological effect to date. Since NMIFA had previously been reported to exert anti-inflammatory effects, we hypothesized that NMIFA taken up by neuroglial cells might also inhibit neuronal inflammation and modulate the release of biochemical mediators. In this study, we extracted sciadonic acid (SCA) from podocarpus nagi seeds or synthesized D7-eicosatrienoic acid (D7-ETrA) from pine seeds oils, then separated and purified different NMIFA using column chromatography. Making use of murine microglia BV-2 cells as the inflammation model, we determined whether pinolenic acid (PNA), D7-ETrA or SCA could affect cellular biochemical reactions and relieve inflammatory responses induced by lipopolysaccharide (LPS). Results showed that SCA and D7-ETrA was separated and purified, and the purities of both fatty acids were approximate 98%. When microglia cells were incubated with PNA, D7-ETrA or SCA, all three NMIFA were incorporated into cellular phospholipids. The incorporation of NMIFA changed phospholipid fatty acid compositions, and decreased the proportion of arachidonic acid (AA). Increasing concentrations of PNA, D7-ETrA or SCA reduced the synthesis of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6) and tumor necrotic factor-a (TNF-a) production. The suppression of pro-inflammatory mediators was due, in part, to the modified gene expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and TNF-a. The incorporation of NMIFA also suppressed phosphor-c-Jun N-terminal kinase (JNK), one of mitogen-activated protein kinases (MAPK), but enhanced phospho-extracellular signal-regulated kinase (ERK) and phosphor-p38 kinase. The increasing expression of both signaling proteins might be associated with the higher expression of neourotrophic factors and antioxidative enzymes. These findings indicate that NMIFA changes the phospholipid fatty acid composition, and modulates the responsiveness of microglia cells to LPS through modification of MAPK pathways.

目 錄 ......................................................................................................... VII
圖 目 錄 ................................................................................................... XII
表 目 錄 ................................................................................................... XV
第一章 前 言 ............................................................................................ 1
1.1 脂肪酸 .......................................................................................... 1
1.1.1 不飽和脂肪酸 ................................................................... 2
1.2 非亞甲基間隔脂肪酸 .................................................................. 5
1.2.1 Pinolenic acid (PNA) ........................................................... 6
1.2.2 D7-Eicosatrienoic acid (D7-ETrA) ....................................... 9
1.2.3 Sciadonic acid (SCA) ......................................................... 11
1.3 神經膠細胞 .................................................................................. 13
1.3.1 微膠細胞 (Microglia cell) ............................................... 14
1.3.2 Microglia cell激活 ............................................................ 16
1.4 免疫系統 ...................................................................................... 17
1.4.1 發炎反應 ........................................................................... 17
1.4.2 活性氧/氮分子 .................................................................. 18
1.4.3 細胞激素 ........................................................................... 21
1.4.4 脂質衍生物 ....................................................................... 24
1.4.5 發炎路徑 ........................................................................... 27
1.5 研究目的 ...................................................................................... 30
第二章 材料與方法 ................................................................................ 31
2.1研究架構 ....................................................................................... 31
2.2 實驗樣品 ...................................................................................... 31
2.3 實驗細胞株 .................................................................................. 31
2.4 實驗藥品與試劑 .......................................................................... 32
2.4.1 藥品與溶劑 ....................................................................... 32
2.4.2 免疫套組 ........................................................................... 33
2.4.3 實驗儀器與設備 ............................................................... 34
2.5 脂肪酸製備 .................................................................................. 35
2.5.1 D7-ETrA合成製備 ............................................................ 35
2.5.2 SCA製備 ........................................................................... 36
2.6 細胞培養 ...................................................................................... 36
2.6.1 細胞培養條件 ................................................................... 36
2.6.2 細胞活化 ......................................................................... 36
2.6.3 細胞繼代 ......................................................................... 36
2.6.4 細胞計數 ........................................................................... 37
2.6.5 細胞凍存 ........................................................................... 37
2.7 探討脂肪酸對LPS誘發微膠細胞後發炎物質的調控 ............. 38
2.7.1 細胞存活率測試 (MTT assay) ........................................ 38
2.7.2 一氧化氮測定 ................................................................... 40
2.7.3 Interleukin-6 (IL-6) 測定 .................................................. 41
2.7.4 Tumor necrosis factor-a(TNF-a) 測定 ............................ 42
2.7.5 前列腺素 Prostoglandin E2 (PGE2) 測定 ....................... 43
2.7.6 Western blot ........................................................................ 44
2.7.7 即時聚合酶連鎖反應 (Real-Time PCR) ........................ 47
2.8探討BV-2攝取脂肪酸後對脂質代謝的影響 ............................ 49
2.8.1細胞脂質萃取 .................................................................... 49
2.8.2脂肪酸分析 ........................................................................ 50
2.9 統計分析 ...................................................................................... 51
第三章 結果與討論 ................................................................................ 52
3.1D-ETrA合成 ............................................................................... 52
3.2探討NMIFA對BV-2細胞存活率之影響 ................................. 57
3.2.1細胞存活率測試 MTT assay ............................................ 57
3.3 NMIFA對BV-2細胞中脂肪酸組成與代謝的影響 .................. 59
3.3.1 攝取NMIFA 24小時後對BV-2細胞脂肪酸組成的影響..................................................................................................... 59
3.3.2 BV-2細胞內攝入NMIFA的總量與其分佈 ................... 60
3.3.3攝取NMIFA 24小時後對BV-2細胞磷脂質組成的影響 ..................................................................................................... 62
3.4以LPS誘導BV-2細胞來探討NMIFA之抗發炎活性 ............ 65
3.4.1探討NMIFA對BV-2細胞一氧化氮生成的影響 .......... 65
3.4.2探討NMIFA對BV-2細胞分泌細胞激素(IL-6)的影響 69
3.4.3探討NMIFA對BV-2細胞分泌細胞激素(TNF-a)的影響 ..................................................................................................... 70
3.4.4探討NMIFA對BV-2細胞分泌前列腺素E2之影響 ..... 72
3.5 NMIFA對BV-2細胞之蛋白質表現的影響 .............................. 74
3.5.1測定BV-2細胞中誘導型一氧化氮合成酶(iNOS)的表現 ..................................................................................................... 74
3.5.2測定BV-2細胞中第二型環氧酵素(COX-2)的表現 ...... 76
3.6測定NMIFA對BV-2細胞中mRNA的表現 ............................ 78
3.7探討NMIFA對BV-2細胞的發炎路徑 - MAPK的影響 ........ 83
第四章 結論 ............................................................................................ 88
第五章 參考文獻 .................................................................................... 91
第六章 附錄 .......................................................................................... 100
附錄一 ............................................................................................... 100
附錄二 ............................................................................................... 105
附錄三 ............................................................................................... 109
附錄四 ............................................................................................... 111
附錄五 ............................................................................................... 113
1. Akaike. A, Kaneko. S, Tamura. Y, Nakata. N, Shiomi. H, Ushikubi. F and Narumiya. S, Prostaglandin E2 protects cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res (1994), 663, 237-243

2. Asset G, Bauge E, Wolff RL, Fruchart JC, Dallongeville J. Effects of dietary maritime pine seed oil on lipoprotein metabolism and atherosclerosis development in mice expressing human apolipoprotein B. Eur J Nutr (2001), 40, 268-74

3. Asset GE, Leroy A, Bauge E, Wolff R.L, Fruchart J.C and Dallongeville J, Effects of dietary maritime pine (Pinus pinaster)-seed oil on high-density lipoprotein levels and in vitro cholesterol efux in mice expressing human apolipoprotein A-I. Bri J Nutr (2000), 84, 353-360

4. Awad. A.B, Young. A.L, Fink. C.S, The effect of unsaturated fatty acids on membrane composition and signal transduction in HT-29 human colon cancer cells, Cancer Lett (1996), 108, 25-33

5. Berger A, German JB, Extensive incorporation of dietary delta-5,11,14 eicosatrienoate into the phosphatidylinositol pool. Biochim Biophys Acta (1991), 1085, 371-6

6. Berger A, Monnard I, Baur M, Charbonnet C, Safonova I, Jomard A, Epidermal anti-Inflammatory properties of 5,11,14 20:3: effects on mouse ear edema, PGE2 levels in cultured keratinocytes, and PPAR activation. Lipids Health Dis ( 2002), 6, 1-5

7. Bousquet M, Calon F, Cicchetti F, Impact of omega-3 fatty acids in Parkinson's disease. Ageing Res Re v(2011), 10, 453-63

8. Burns C.P, Luttenegger D.G, Dudley D.T, Buettner G.R, Spector A.A, Effect of modification of plasma membrane fatty acid composition on fluidity and methotrexate transport in L1210 murine leukemia cells, Cancer Res (1979), 39 , 1726-1732

9. Cazevieille C, Muller A and Bonne C, Prostacyclin (PGI2) protects rat corticalneurons in culture against hypoxia/reoxygenation and glutamate-induced injury. Neurosci. Lett (1993), 160, 106-108

10. Cazevieille C, Muller A, Meynier F, Dutrait N and Bonne C, Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem. Int (1994), 24, 395-398

11. Chang C.S, Sun H.L, Lii C.K, Chen H.W, Chen P.Y,and Liu K.L, Gamma-Linolenic Acid Inhibits Inflammatory Responses by Regulating NF-κB and AP-1 Activation in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Inflammation( 2010), 33, 46-57

12. Chuang L.T, Tsai P.J, Lee C.L, and Huang Y.S, Uptake and Incorporation of Pinolenic Acid Reduces n-6 Polyunsaturated Fatty Acid and Downstream Prostaglandin Formation in Murine Macrophage. Lipids (2009), 44, 217-224

13. Chuang L.T, Huang Y.L, Huang W.C, and Liao J.S, Anti-inflammatory effect of newly synthesized 7-eicosatrienoic acid (7,11,14-20:3) on murine RAW264.7 cells. The abstract presented on the 102nd American Oil Chemists’ Society Annual Meeting &; Expo, (2011) (Abstract book 65).

14. Da SJ, Pierrat B, Mary JL, Lesslauer W. Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. J Biol Chem (1997), 272, 28373-80

15. Eigler. A, Sinha. B, Hartmann. G and Endres. S, Taming TNF: strategies to restrain this proinflammatory cytokine. Immunol Today (1997), 18, 487-92

16. Endo Y, Osada Y, Kimura F, Fujimoto K, Effects of Japanese torreya (Torreya nucifera) seed oil on lipid metabolism in rats. Nutritional (2006), 22, 553-558

17. Endo Y, Osada Y, Kimura F, Shirakawa H, Fujimoto K. Effects of Japanese Torreya (Torreya nucifera) seed oil on the activities and mRNA expression of lipid metabolism-related enzymes in rats. Biosci Biotechnol Biochem (2007) , 71, 231-3

18. Evans R.W, Sprecher H. Metabolism of icosa-5,11,14-trienoic acid in human platelets and the inhibition of arachidonic acid metabolism in human platelets by icosa-5,8,14-triynoic and icosa-5,11,14-triynoic acids. Prostaglandins (1985), 29, 431-41

19. Fiebich B.L, Mueksch B, Boehringer M and Hull M, Interleukin-1beta induces cyclooxygenase-2 and prostaglandin E(2) synthesis in human neuroblastoma cells: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB. J. Neurochem (2000), 75, 2020-2028

20. Finkel T, Signal transduction by reactive oxygen species in non-phagocytic cells. J. Leukocyte Biol (1999), 65, 337-340

21. Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM, Microglial Response to Amyloid Plaques in APPsw Transgenic Mice. Am J Pathol (1998), 152, 307-17

22. Gadient RA, Otten UH, Interleukin-6 (IL-6)--a molecule with both beneficial and destructive potentials. Prog Neurobiol (1997), 52, 379-390

23. Gahtan E, Overmier J.B, Inflammatory pathogenesis in Alzheimer’s disease: biological mechanisms and cognitive sequel. Neuroscience and Biobehavioral Reviews (1999), 23, 615-633

24. Galea E, Reis DJ, Fox ES, Xu H and Feinstein DL, CD14 mediate endotoxin induction of nitric oxide synthase in cultured brain glial cells. J. Neuroimmunol (1996), 64, 19-28

25. Goode HF, Webster NR, Free radicals and antioxidants in sepsis. Crit Care Med (1993), 21, 1770-6

26. Griendling KK, Sorescu D, Ushio-Fukai M, NAD(P)H Oxidase : Role in Cardiovascular Biology and Disease. Circulation Research (2000), 86, 494-501

27. Guha M, Mackman N, LPS induction of gene expression in human monocytes. Cellular Signalling (2001), 13, 85-94

28. Hauss-Wegrzyniak B, Galons JP, Wenk GL, Quantitative Volumetric Analyses of Brain Magnetic Resonance Imaging from Rat with Chronic Neuroinflammation. Experimental Neurology (2000), 165, 347-354

29. Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA, The JNK are important for development and survival of macrophages. J Immunol (2006), 176, 2219-2228.

30. Huang Y.S, and Mills, γ-Linolenic Acid:Metabolism and Its Role in Nutrition and Medicine,AOCS Press (1996)

31. Huang Y.S, Huang W.C., Li C.W., and Chuang L.T, Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Mol. Cell. Biochem. (2011), 358, 85-94.

32. Ide T, Murata M, Sugano M, Octadecatrienoic acids as the substrates for the key enzymes in glycerolipid biosynthesis and fatty acid oxidation in rat liver. Lipids (1995), 30, 755-62

33. Ikeda I, Oka T, Koba K, Sugano M, Lie Ken Jie MS, 5c, 11c, 14c -Eicosatrienoic acid and 5c, 11c, 14c, 17c-eicosatetraenoic acid of Biota orientalis seed oil affect lipid metabolism in the rat. Lipids (1992), 27, 500-504

34. Jana M, Dasgupta S, Saha RN, Liu X, Pahan K, Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. J Neurochem (2003), 86, 519-528

35. Jelinek H, Karperien A, Buchan A, and Bossomaier T. Differentiating Grades of Microglial Activation with Fractal Analysis. Monash:Monash University (2008), 12, 1-12

36. Ji RR, Suter MR, p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain (2007), 1, 3:33

37. Jones SM, Zhong Z, Enomoto N, Schemmer P, Thurman RG, Dietary Juniper Berry Oil Minimizes Hepatic Reperfusion Injury in the Rat. Hepatology (1998) , 28, 1042-1050

38. Jüttler E, Tarabin V, Schwaninger M. Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity. Neuroscientist (2002), 8, 268-75

39. Kaneko YS, Nakashima A, Mori K, Nagatsu T, Nagatsu I, Ota A, Lipopolysaccharide extends the lifespan of mouse primary-cultured microglia. Brain Res (2009), 1279, 9-20

40. Kazuma M, Takahiko S, and Kazuhiro I, Formation of the 42-mer Amyloid β Radical and the Therapeutic Role of Superoxide Dismutase in Alzheimer’s Disease. Journal of Amino Acids (2011), 10

41. Kelder B, Mukerji P, Kirchner S, Hovanec G, Leonard A.E., Chuang L.T, Kopchick J.J, and Huang Y.S, De novo Synthesis of an essential fatty acid in cultured mammalian cells and transgenic animals. Mol. Cell. Biochem (2001), 219, 7-11.

42. Keller M, Jackisch R, Seregi A, Hertting G, Comparison of prostanoid forming capacity of neuronal and astroglial cells in primary cultures. Neurochem. Int (1985), 7, 655-665

43. Kitamura Y, Yanagisawa D, Takata K, Taniguchi T, Neuroprotective function in brain microglia, Current Anaesthesia &; Critical Care (2009), 20, 142-147

44. Kuklev D.V, Smith W, Chemical C2-elongation of polyunsaturated fatty acids, Chemistry and Physics of Lipids (2006), 172-177

45. Lee MK, Park AJ, Kim DH. Tumor necrosis factor-alpha and interleukin-6 promoter gene polymorphisms are not associated with an increased risk of endometriosis. Fertil Steril, (2002), 77, 1304-5

46. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE, Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A(2003), 100, 3077-82

47. Liu W, Tang Y, Feng J, Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sciences (2011), 89, 141-146

48. Locksley RM, Killeen N, Lenardo MJ, The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology. Cell (2001), 104, 487-501

49. Lubos E, Handy D.E, and Loscalzo J. Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci (2008), 1, 5323-44

50. Lu D.Y, Tsao Y.Y, Leung Y.M &; Su K.P, Docosahexaenoic Acid Suppresses Neuroinflammatory Responses and Induces Heme Oxygenase-1 Expression in BV-2 Microglia: Implications of Antidepressant Effects for Omega-3 Fatty Acids. Neuropsychopharmacology (2010), 35, 2238–2248

51. Maggio M, Guralnik JM, Longo DL, Ferrucci L Interleukin-6 in Aging and Chronic Disease: A Magnificent Pathway. J Gerontol A Biol Sci Med Sci (2006), 61, 575-584

52. Marnett LJ, Kalgutkar AS, Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Trends Pharmacol Sci (1999), 20, 465-9

53. Matsumoto Y, Ohmori K and Fujiwara M, Microglia and astroglial reactions to inflammatory lesions of experimental autoimmuneencephalomyelitis in the rat central nervous system, J Neuroimmunol (1992), 37, 23-33

54. Matsuo N, Osada K, Kodama T, Lim BO, Nakao A, Yamada K, Sugano M, Effects of γ-linolenic acid and its positional isomer pinolenic acid on immune parameters of brown-norway rats, Prostaglandins, Leukotrienes and Essential Fatty Acids (1996), 55, 223-229

55. Minghetti L, Levi G, Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Progress in Neurobiology (1998), 54, 99-125

56. Moon D.O, Kim K.C, Jin C.Y, Han M.H, Park C, Lee K.J, Park Y.M, Choi Y.H, Kim G.Y. Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. International Immunopharmacology ,(2007), 222-229

57. Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP, Synthesis of nitric oxide in CNS glial cells. Trends in Neurosciences (1993), 16, 323-328

58. Nagata Y, Takahashi N, Davis RJ and Todokoro K, Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood (1998), 92, 1859-69

59. Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T, Neurotrophin Secretion From Cultured Microglia. Journal of Neuroscience Research (2001), 65, 322-331

60. Neurath MF, Finotto S, IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine &; Growth Factor Reviews (2011), 22, 83-89

61. Nozaki K, Nishimura M, and Hashimoto N, Mitogen-activated protein kinases and cerebral ischemia. Mol. Neurobiol (2001), 23, 1–19

62. Ohata T, Fukuda K, Takahashi M, Sugimura T, Wakabayashi K. Suppression of nitric oxide production in lipopolysaccharide-stimulated macrophage cells by omega 3 polyunsaturated fatty acids. Jpn J Cancer Res (1997), 88, 234-7

63. Park SY, Lee H, Hur J, Kim SY, Kim H, Park JH, Cha S, Kang SS, Cho GJ, Choi WS, Suk K, Hypoxia induces nitric oxide production in mouse microglia via p38 mitogen-activated protein kinase pathway. Molecular Brain Research (2002), 107, 9-16

64. Pasman WJ, Heimerikx J, Rubingh CM, van den Berg R, O'Shea M, Gambelli L, Hendriks HF, Einerhand AW, Scott C, Keizer HG, Mennen LI, The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis (2008), 20, 7-10

65. Pasquier E, Ratnayake WMN and Wolff RL, Effects of Δ5 polyunsaturated fatty acids of maritime pine (Pinus pinaster) seed oil on the fatty acid profile of the developing brain of rats. Lipids (2001), 36, 567-574

66. Pawate S, Bhat NR. C-Jun N-terminal kinase (JNK) regulation of iNOS expression in glial cells: predominant role of JNK1 isoform. Antioxid Redox Signal (2006), 8, 903-909

67. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH, Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev (2001), 22, 153-83
68. Picker SD, Fridovich I, On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium. Arch Biochem Biophys (1984), 228, 155-158

69. Popp-Snijders. C, Schouten J.A, van Blitterswijk W.J,. van der Veen E.A, Changes in membrane lipid composition of human erythrocytes after dietary supplementation of (n-3) polyunsaturated fatty acids. Maintenance of membrane fluidity, Biochim. Biophys (1986), 854, 31-37

70. Rao JS, Ertley RN, Lee HJ, DeMar JC Jr, Arnold JT, Rapoport SI, Bazinet RP, n-3 Polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Molecular Psychiatry (2007), 12, 36-46

71. Shohami E, Shapira Y, Yadid G, Reisfeld N and Yedgar S, Brain phospholipase A2 is activated after experimental closed head injury in the rat. J. Neurochem (1989), 53, 1541-1546

72. Si Q, Nakamura Y, Kataoka K, A Serum Factor Enhances Production of Nitric Oxide and Tumor Necrosis Factor-a From Cultured Microglia. Experimental Neurology (2000), 162, 89-97

73. Soule HD, Vazguez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst (1973 ), 51, 1409-16

74. Subbaramaiah K, Dannenberg AJ, Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci (2003), 24, 96-102

75. Sugano M, Ikuo Ikeda, Wakamatsu K, and Oka T, Influence of Korean pine (Pinus koraiensis)-seed oil containing cis-5,cis-9,cis-l2-octadecatrienoic acid on polyunsaturated fatty acid metabolism, eicosanoid production and blood pressure of rats. British Journal of Nutrition (1994), 72, 175-183

76. Svensson C, Fernaeus SZ, Part K, Reis K, Land T, LPS-induced iNOS expression in Bv-2 cells is suppressed by anoxidative mechanism acting on the JNK pathway-Apotential role for neuroprotection. Brain Res (2010), 1322, 1-7


77. Tanaka T, Takimoto T, Morishige J, Kikuta Y, Sugiura T, Satouchi K, Non-methylene-Interrupted Polyunsaturated Fatty Acids:Effective Substitute for Arachidonate of Phosphatidylinositol. Biochemical and Biophysical Research Communications (1999), 264, 683-688

78. Tanaka T, Morishige J, Takimoto T, Takai Y, Satouchi K, Metabolic characterization of sciadonic acid (5c,11c,14c-eicosatrienoic acid) as an effective substitute for arachidonate of phosphatidylinositol. Eur. J. Biochem (2001), 268, 4928-4939

79. Tanaka T, Morishige J, Iwawaki D, Fukuhara T, Hamamura N, Hirano K, Osumi T, Satouchi K, Metabolic pathway that produces essential fatty acids from polymethylene-interrupted polyunsaturated fatty acids in animal cells, FEBS J (2007), 274, 2728-2737

80. Wang FZ, Wu HB, Xu SQ, Guoc XR, Yang J, XiaoFeng Shen. Macrophage migration inhibitory factor activates cyclooxygenase 2-prostaglandin E2 in cultured spinal microglia. Neuroscience Research (2011), 71, 210-218

81. Wilms H, Rosenstiel P, Sievers J, Deuschl G.N, Zecca L, and Lucius R. Activation of microglia by human neuromelanin is NF-kB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease1. The FASEB Journal (2003), 17, 500-502

82. Xu X, Malave A. P38 MAPK, but not p42/p44 MAPK mediated inducible nitric oxide synthase expression in C6 glioma cells. Life Sciences (2000), 67, 3221-3230

83. Yoshino Y, Yamamoto S, Kohsaka S, Oshiro S, Nakajima K, Superoxide anion contributes to the induction of tumor necrosis factor alpha (TNFα) through activation of the MKK3/6-p38 MAPK cascade in rat microglia. Brain es (2011), 1422, 1-12

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊