跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姚佩雯
研究生(外文):Pei-Wun Yao
論文名稱:芝麻素減緩因卡英酸誘導癲癇模式之神經發炎反應
論文名稱(外文):Sesamin ameliorates neuroinflammation in kainic acid-induced status epilepticus
指導教授:侯建維侯建維引用關係
指導教授(外文):Chien-Wei Hou
學位類別:碩士
校院名稱:元培科技大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:芝麻素癲癇卡英酸神經細胞PC12神經微膠細胞BV-2活性氧自由基
外文關鍵詞:SesaminKainic acidPC12 cellsBV-2 cellsReactive oxygen species
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1307
  • 評分評分:
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:1
芝麻素Sesamin已知具有很好的抗氧化與清除自由基之能力,所以可以使用於神經保護之功能。我們是以卡英酸引發神經興奮毒性之癲癇模式,並且利用芝麻素神經保護之特性,探討卡英酸引發神經細胞株PC12與神經微膠細胞株BV-2的神經興奮毒性的芝麻素神經保護之能力與機轉。
本研究證實,芝麻素可以有效降低PC12與BV-2細胞的神經興奮傷害(MTT, LDH),與降低因細胞傷害之鈣離子釋放量;芝麻素可以清除活性氧自由基、降低脂質過氧化物含量、與降低神經發炎因子-前列腺素 E2 之釋放量;由細胞傳遞路徑實驗結果顯示,芝麻素明顯降低 JNK、ERK、p38 MAPKs、caspase-3 、Rho A、與COX-2 等蛋白質表現量,在離體實驗證實,芝麻素可以有效的降低卡英酸所造成之神經興奮傷害,是藉由降低神經細胞凋亡作用 (p38 MAPKs、caspase-3),與降低神經發炎反應 (COX-2)。
本研究印證芝麻素可以有效的減緩卡英酸誘導所產生的神經興奮之傷害,是綜合性地藉由清除活性氧自由基、降低神經細胞凋亡作用、與降低神經發炎反應,來達成神經保護之功能。

Sesamin, a lignan from sesame oil, has been shown to have antioxidative properties. Kainic acid (KA)-induced status Epilepsy was involved with release of free radicals. Sesamin is a well-known antioxidant from sesame seeds and it scavenges free radicals in several brain injury models. However the neuroprotective mechanism of sesamin to KA-induced seizure has not been studied. Sesamin on KA-induced cell injury was also investigated on several cellular pathways including neuronal plasticity (RhoA), neurodegeneration (Caspase-3), and inflammation (COX-2) in PC12 cells.Sesamin was effective to protect PC12 cells from KA-injury in a dose-dependent manner. It decreased the release of Ca2+, reactive oxygen species, and MDA from PC12 cells. Western blot analysis revealed that sesamin significantly reduced ERK1/2, p38 MAPKs mitogen-activated protein kinases and COX-2 expression in both cells and RhoA expression in PC12 cells. Furthermore, Sesamin was able to reduce PGE2 production from both cells under KA-stimulation. Taken together, it suggests that sesamin could protect KA-induced brain injury through anti-inflammatory, anti-apoptosis and partially antioxidative mechanisms.
封面 I
致謝 II
縮寫對照表 III
中文摘要 IV
英文摘要 V
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1 癲癇 1
1.2 卡英酸 (Kainic acid, KA) 3
1.3 神經系統內的細胞 11
1.3.1 嗜鉻性神經細胞瘤細胞 PC12 cells 12
1.3.2 神經微膠細胞 BV-2 cells 14
1.4 芝麻素Sesamin 16
1.5 研究目的 19
第二章 材料與方法 20
2.1 藥品 20
2.2 儀器 20
2.3 試劑Reagents 20
2.4 細胞培養 23
2.5 細胞存活率試驗 24
2.6 細胞傷害試驗 25
2.7 鈣離子含量試驗 26
2.8 清除活性氧化物能力試驗 27
2.9 一氧化氮自由基含量測試 28
2.10 細胞內蛋白質萃取 29
2.11 細胞內特異性蛋白質含量試驗 29
2.12 脂質過氧化物含量試驗 31
2.13 凋亡蛋白Caspase-3 表現 33
2.14 前列腺素E2 含量試驗 34
2.15 統計分析 (Statistical analysis) 35
2.16 實驗流程 36
第三章 結果 37
3.1 KA誘導產生癲癇模式下SA保護PC12細胞存活率與細胞傷害之影響 37
3. 2 KA誘導產生癲癇模式下SA保護PC12細胞鈣離子含量之影響 39
3.3 KA誘導產生癲癇模式下SA保護PC12細胞清除活性氧化物能力 41
3.4 KA誘導產生癲癇模式下SA保護PC12細胞脂質過氧化物含量 43
3.7 KA誘導產生癲癇模式下SA保護PC12細胞前列腺素 E2含量測定 45
3.5 KA誘導產生癲癇模式下SA保護PC12細胞之分子機制路徑 47
3.6 KA誘導產生癲癇模式下SA保護PC12細胞凋亡蛋白Caspase-3含量 50
3.8 KA誘導產生癲癇模式下SA保護BV-2細胞存活率與細胞毒性之影響 52
3.9 KA誘導產生癲癇模式下SA保護BV-2細胞鈣離子含量之影響 54
3.10 KA誘導產生癲癇模式下SA在BV-2細胞中一氧化氮含量 56
3.11 KA誘導產生癲癇模式下SA保護BV-2細胞清除活性氧化物能力 58
3.13 KA誘導產生癲癇模式下SA保護BV-2細胞前列腺素 E2含量測定 60
3.12 KA癲癇模式下SA保護BV-2細胞之分子機制路徑 62
第四章 討論 65
第五章 結論 69
參考文獻 70
附件 80


1. Acharya MM, Hattiangady B, Shetty AK: Progress in neuroprotective strategies for preventing epilepsy. Progress in Neurobiology 2008. 84(363-404).
2. Ahmad AS, Saleem S, Ahmad M, Doré S: Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 2006, 89:265-270.
3. Ames BN, Shigenaga MK, Hagen TM: Oxidants, antioxidants, and the degenerative diseases of aging Proc. Natl Acad Sci 1993, 90: 7915–7922.
4. Arispe N, Pollard HB, Rojas E: β-Amyloid Ca2+ -channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 1994, 140: 119-125.
5. Akimoto K, Kitagawa Y, Akamatsu T, Hirose N, Sugano M, Shimizu S, Yamada H: Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Ann. Nutr. Metab 1993, 37: 218-224.
6. Balcioglu A, Maher TJ: Determination of kainic acid-induced release of nitric oxide using a novel hemoglobin trapping technique with microdialysis. Neurochem 1993, 61: 2311-2231.
7. Bocchini V, Mazzolla R, Bistoni F: Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 1990, 27: 229-237.
8. Berger ML, Tremblay E, Nitecka L, Ben-Ari Y: Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system. Neuroscience 1984, 13: 1095-1104.
9. Berg M, Bruhn T, Johansen F F, Diemer NH: Kainic acid-induced seizures and brain damage in the rat: different effects of NMDA and AMPA receptor antagonists. Pharmac&;Toxic 1993, 73: 262-268.
10. Bridgers SL: Epileptiform Abnormalities Discovered on Electroencephalographic Screening of Psychiatric Inpatients. Arch Neurol 1987, 44: 312-316.
11. Bruce AJ, Baudry M: Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 1995, 18: 993-1002.
12. Candelario-Jalil E, Ajamieh H H, Sam S, Martinez G, León Fernández: Nimesulide limits kainate-induced oxidative damage in the rat hippocampus. Eur. J. Pharmacol 2000, 90: 295-298.
13. Che Y, Yu YM, Han PL, Lee JK: Delayed induction of p38 MAPKs in reactive astrocytes in the brain of mice after KA-induced seizure. Brain Res Mol Brain Res 2001, 94: 157-65.
14. Cowley S, Paterson H, Kemp P, Marshall CJ: Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 1994, 77: 841-852.
15. Penkowa M, Molinero A, Carrasco J, Hidalgo J: Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001, 102: 805-818.
16. Dabbeni-Sala F, Floreani M, Franceschini D, Skaper SD, Giusti P: Kainic acid induces selective mitochondrial oxidative phosphorylation enzyme dysfunction in cerebellar granule neurons: protective effects of melatonin and GSH ethyl ester. FASEB J 2001, 15: 1786-1788.
17. Dal-Pizzol F, Klamt F, Vianna MM, Schröder N, Quevedo J, Benfato MS, Moreira JC, Walz R: Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats.Neurosci Lett 2000, 291: 179-182.
18. D’Antuono M, Benini R, Biagini G, D’Arcangelo G, Barbarosie M, Tancredi V,Avoli M: Limbic network interactions leading to hyperexcitability in a model of temporal lobe epilepsy. J Neurophysiol. 2002, 87: 634-639.
19. Drubin DG, Feinstein SC, Shooter EM, Kirschner MW: Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 1985, 101: 1799-1807.
20. Dubreuil CI, Marklund N, Deschamps K, McIntosh TK, McKerracher L: Activation of Rho after traumatic brain injury and seizure in rats. Exp Neurol 2006, 198: 361-369.
21. Dykens JA, Stern A,Trenkner E: Mechanisms of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J. Neurochem 1987, 9: 1222-1228.
22. E. Herlaar, Z. Brown: p38 MAPK signaling cascades in inflammatory disease. Mol. Med 1999, 439-447.
23. Ferkany JW, Zaczek R, Coyle JT: Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature 1988, 298: 757-759.
24. Ferri CC, Ferguson AV: Prostaglandin E2 mediates cellular effects of interleukin-1beta on parvocellular neurones in the paraventricular nucleus of the hypothalamus. J. Neuroendocrinol 2005, 17: 498-508.
25. Folbergrova J, Druga R, Otahal J, Haugvicova R, Mares P, Kubova H: Effect of free radical spin trap N-tert-butyl-alpha-phenylnitrone (PBN) on seizures induced inimmature rats by homocysteic acid. Exp. Neurol 2006, 201: 105-119.
26. Gupta YK, Briyal S, Chaudhary G: Protective effect of trans-resveratrol gainst kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav 2002, 71: 245-249.
27. Gotoh Y, Nishida E, Yamashita T, Hoshi M, Kawakami M, Sakai H: Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur J Biochem 1990, 193: 661-669.
28. Goodenough S, Davidson M, Chen M, Beckmann A, Pujic Z, Otsuki M, Matsumoto I, Wilce P: Immediate early gene expression and delayed cell death in limbic areas of the rat brain after kainic acid treatment and recovery in the cold. Exp Neurol 1997, 145: 451-461.
29. Greene L A, Tischler A S: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 1976, 73: 2424-2428.
30. Giusti P, Lipartiti M, Franceschini D, Schiavo N, Floreani M, Manev H: Neuroprotection by melatonin from kainate-induced excitotoxicity in rats. FASEB J 1996, 10: 891-896.
31. Halliwell B, Gutteridge JM, Blake D.Metal ions and oxygen radical reactions in human inflammatory joint disease. Philos Trans R Soc Lond B Biol Sci 1985, 311: 659-671.
32. Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M.The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 2009, 26: 83-94.
33. Hauser WA, Annegers JF, urland LT: Prevalence of epilepsy in Rochester. Epilepsia 1991, 32: 1940-1980.
34. Hashimoto K, Watanabe K, Nishimura T, Iyo M, Shirayama Y, Minabe Y: Behavioral changes and expression of heat shock protein HSP-70 mRNA, brain-derived neurotrophic factor mRNA, and cyclooxygenase-2 mRNA in rat brain following seizures induced by systemic administration of kainic acid. Brain Res1998, 804: 212-223,.
35. Huang Q, Wu LJ, Tashiro S, Onodera S, Ikejima T: Elevated levels of DNA repair enzymes and antioxidative enzymes by (+)-catechin in murine microglia cells after oxidative stress. J Asian Nat Prod Res 2006, 8: 61-71.
36. Hwang SL, Yen GC: Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J Agric Food Chem 2008, 56: 859-64.
37. Hou RC, Chen HL, Tzen JT, Jeng KC. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells. NeuroReport 2003, 14: 1815-9.
38. Hou RCW, Huang HM, Tzen JCT, Jeng KCG. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J. Neurosciece Research 2003, 74: 123-133.
39. Hou RC, Wu CC, Yang CH, Jeng KC: Protective effects of sesamin and sesamolin on BV-2 microglia under hypoxia. Neurosci Letters 2004, 367: 10-3.
40. Hou RC, Wu CC, Huang JR, Chen YS, Jeng KC. Oxidative Toxicity in BV-2 Microglia Cells: Sesamolin Neuroprotection of H2O2 Injury Involving Activation of p38 Mitogen-Activated Protein Kinase. Ann N Y Acad Sci 2000, 1042: 279-85.
41. Hughes FJ, Buttery LD, Hukkanen MV, O'Donnell A, Maclouf J, Polak JM: Cytokine-induced prostaglandin E2 synthesis and cyclooxygenase-2 activity are regulated both by a nitric oxide-dependent and -independent mechanism in rat osteoblasts in vitro. J Biol Chem 1999, 56: 317-333.
42. Imaizumi S, Kondo T, Deli MA, Gobbel G, Joó F, Epstein CJ, Yoshimoto T, Chan PH: The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem Int 1996, 29: 205-211.
43. Jeng KCG , Hou RCW: Sesamin and Sesamolin: Nature’s Therapeutic Lignans. Current Enzyme Inhibition 2005, 1: 11-20.
44. Kawaguchi K, Hickey RW, Rose ME, Zhu L, Chen J, Graham SH: Cyclooxygenase-2 expression is induced in rat brain after kainate-inducedseizures and promotes neuronal death in CA3 hippocampus. Brain Res 2005, 1050: 130-137.
45. Jóźwiak S, Kossoff EH, Kotulska-Jóźwiak K: Dietary treatment of epilepsy: rebirth of an ancient treatment. Neurol Neurochir 2011, 45: 370-378.
46. Kashihara K, Sakai K, Marui K, Shohmori T: Kainic acid may enhance hippocampal NO generation of awake rats in a seizure stage-related fashion. Neurosci Res 1998, 32: 189-194.
47. Kuboyama K, Tsuda M, Tsutsui M, Toyohara Y, Tozaki-Saitoh H, Shimokawa H, Yanagihara N, Inoue K.Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases. Mol Pain. 2011, 14: 7-50.
48. Kim YH, Choi SS, Lee JK, Won JS, Choi MR, Suh HW: Possible roles of JNK pathway in the regulation of hippocampal proenkephalin and immediate early gene expression induced by kainic acid. Mol Cells 2001, 11: 144-50
49. Khan MM, Ishrat T, Ahmad A, Hoda MN, Khan MB, Khuwaja G, Srivastava P, Raza SS, Islam F, Ahmad S: Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chem Biol Interact 2010. 183: 255-263.
50. Lahtinen L, Ndode-Ekane XE, Barinka F, Akamine Y, Esmaeili MH, Rantala J, Pitkänen A: Urokinase-type plasminogen activator regulates neurodegeneration and neurogenesis but not vascular changes in the mouse hippocampus after status epilepticus. Neurobiol Dis 2010, 37: 692-703.
51. Lehmann A, Isacsson H, Hamberger A: Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J. Neurochem 1983, 40: 1314-1320.
52. Lee JY, Jeon BT, Shin HJ, Lee DH, Han JY, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS: Temporal expression of AMP-activated protein kinase activation during the kainic acid-induced hippocampal cell death. J Neural Transm 2009, 116: 33-40.
53. Matagne V, Lebrethon MC, Gérard A, Bourguignon JP: Kainate/estrogen receptor involvement in rapid estradiol effects in vitro and intracellular signaling pathways. Endocrinology 2005. 146: 2313-2323.
54. Milatovic D, Gupta RC, Dettbarn WD: Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res 2002. 13: 330-337.
55. Martinchik AN: Nutritional value of sesame seeds. Vopr Pitan 2011, 80: 41-43.
56. Miyamoto R, Shimakawa S, Suzuki S, Ogihara T, Tamai H.Edaravone prevents kainic acid-induced neuronal death. Brain Res 2008, 1209: 85-91.
57. Mülsch A, Busse R, Mordvintcev PI, Vanin AF, Nielsen EO, Scheel-Krüger J, Olesen SP: Nitric oxide promotes seizure activity in kainate-treated rats. Neuroreport 1994, 5: 2325-2328.
58. Milatovic D, Montine TJ, Aschner M: Measurement of isoprostanes as markers of oxidative stress. Methods Mol Biol 2011, 758: 195-204.
59. Mihaljević B, Katusin-Razem B, Razem D: The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response. Free Radic Biol Med 1996, 21: 53-63.
60. Meyerhoff JL, Lee JK, Rittase BW, Tsang AY, Yourick DL: Lipoic acid pretreatment attenuates ferric chloride-induced seizures in the rat. Brain.Res 2004, 1016: 139-144.
61. Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y. Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 2003, 51: 1666-1670.
62. Namiki M. Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr 2007, 47: 651-673.
63. Nozaki K, Nishimura M, Hashimoto N: Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 2001, 1:1-19.
64. Petrova TV, Akama KT, Van Eldik LJ: Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-Delta12,14-prostaglandin J2. Proc Natl Acad Sci U S A 1999, 8: 4668-4673.
65. Puttfarcken PS, Getz RL, Coyle JT: Kainic acid-induced lipid peroxidation: protection with butylated hydroxytoluene and U7851F in primary cultures of cerebellar granule cells. Brain Res 1993, 624: 223-232.
66. Penkowa M, Molinero A, Carrasco J, Hidalgo J: Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001, 102: 805-818.
67. Rogi T, Tomimori N, Ono Y, Kiso Y: The mechanism underlying the synergetic hypocholesterolemic effect of sesamin and α-tocopherol in rats fed a high-cholesterol diet. J Pharmacol Sci 2011, 115: 408-416.
68. Regan RF, Wang Y, Ma X, Chong A, Guo Y. A: Ctivation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte cultures. J Neurochem 2001, 79: 545-555.
69. Schwob JE, Fuller T, Price JL, Olney JW: Widespread patterns of neuronal damage following systemic or intracerebral infections of kainic acid: A histological study. Neurosci 1980, 5: 991-1014.
70. Shafer TJ, Atchison WD: Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 1991, 12: 473-492.
71. Saijo K, Glass CK: Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011, 25: 775-787.
72. Stadtman ER, Berlett BS: Reactive oxygen-mediated protein oxidation in aging and disease. Chem. Res. Toxicol 1997, 10: 485-494.
73. Sztriha L, Joó F, Szerdahelyi P: Accumulation of calcium in the rat hippocampus during kainic acid seizures. Brain Res 1985, 360: 51-57.
74. Santos Da Silva J, Schubert V, Dotti CG: RhoA Rac1, and cdc42 intracellular distribution shift during hippocampal neuron development. Mol Cell Neurosci 2004, 27: 1-7.
75. Sillanpää M: Epilepsy in children: prevalence, disability and handicap. Epilepsia 1992, 33: 444-449.
76. Sun AY, Cheng Y, Bu Q, Oldfield F: The biochemical mechanism of the excitotoxicity of kainic acid. Mol Chem Neuropathol 1992, 17: 51-63.
77. Sharma AK, Searfoss GH, Reams RY, Jordan WH, Snyder PW, Chiang AY, Jolly RA, Ryan TP: Kainic acid-induced F-344 rat model of mesial temporal lobe epilepsy: gene expression and canonical pathways. Toxicol Pathol 2009, 37: 776-789.
78. Solà C, Tusell JM, Serratosa J: Calmodulin is expressed by reactive microglia in the hippocampus of kainic acid-treated mice. Neuroscience 1997; 81: 699-705.
79. Stoll G, Jander S: The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999, 58: 233-47.
80. Tanabe H, Kuribayashi K, Tsuji N, Tanaka M, Kobayashi D, Watanabe N: Sesamin induces autophagy in colon cancer cells by reducing tyrosine phosphorylation of EphA1 and EphB2. Int J Oncol 2011, 39: 33-40.
81. Tremblay E, Ben-Ari Y: Usefulness of parenteral kainic acid as a model of temporal lobe epilepsy. Rev Electroencephalogr Neurophysiol Clin 1984, 14: 241-246.
82. Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL: A sensitive denaturinggradient-Gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am. J. Hum 2000, 67: 432-443.
83. Treiman DM, Walton NY, Kendrick C: A progressive sequence of electroencephalographic changes during generalized convulsive status epilepticus. Epilepsy Res 1990. 5: 49-60.
84. Waterfall AH, Singh G, Fry JR, Marsden CA: Detection of the lipid peroxidation product malonaldehyde in rat brain in vivo. Neurosci Lett 1995. 2000, 69-72.
85. Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L: Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 2009, 34: 1393-1400.
86. Xu K, Stringer JL: Antioxidants and free radical scavengers do not consistently delay seizure onset in animal models of acute seizures. Epilepsy Behav 2008, 1: 77-82.
87. Yang DJ, Hwang S: Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. J Chromatography 2006, 1119: 277-284.
88. Yasuda K, Ikushiro S, Kamakura M, Ohta M, Sakaki T: Metabolism of sesamin by cytochrome P450 in human liver microsomes. Drug Metab Dispos 2010, 12: 2117-2123.
89. Zhang M, Lee HJ, Park KH, Park HJ, Choi HS, Lim SC, Lee MK: Modulatory effects of sesamin on dopamine biosynthesis and l-DOPA-induced cytotoxicity in PC12 cells. Neuropharmacology. 2012, 39: 33-40.
90. Zhang ZT, Cao XB, Xiong N, Wang HC, Huang JS, Sun SG, Wang T: Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 2010, 31: 900-906.
91. Commission on Classification and Terminology of the International League Against Epilepsy: Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989, 389-399.
92. Wallace, SJ. Definitions. In S. Wallace(Ed.), London: Chapman &; Hall. Epilepsy in children 1996.
93. O’Donohole N V: History and statistics. Epilepsies of childhood (3nd ed.). London: Butterworth- Heinemann. Epilepsy 1994.
94. 壽天德/神經生物學,九州出版社,2003。
95. 基南恩, 徐淑媛, 陳金山/巴氏神經解剖學,藝軒,2001。
96. 王錫崗等編譯/人體生理學(四版),新文京2006,05。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top