跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許子威
研究生(外文):Tzu-Wei-Hsu
論文名稱:蚊香燃燒所產生不同粒徑微粒負載的多環芳香烴排放特性
論文名稱(外文):Characteristics of Polycyclic Aromatic Hydrocarbon Emissions in Various Particle Sizes from Smoldering Mosquito CoilCharacteristics of Polycyclic Aromatic Hydrocarbon Emissions in Various Particle Sizes from Smoldering Mosquito Coil
指導教授:楊慈定楊慈定引用關係
指導教授(外文):Tzu-Ting Yang
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:107
中文關鍵詞:蚊香多環芳烴香烴排放因子
外文關鍵詞:Polycyclicaromatic hydrocarbonsMosquito coilEmission factorsTotal toxic equivalent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究在小型燃燒測試系統,燃燒不同合成除蟲菊組成的蚊香燃燒所產生不同粒徑微粒的多環芳香烴排放特性。使用GC/MS定性與定量多環芳香烴。
研究結果顯示4種蚊香燃燒所產生總懸浮微粒質量與總多環芳香烴排放因子有顯著的差異,4種蚊香燃燒所產生的總懸浮微粒質量排放因子範圍為31.0– 70.3 mg/g,其所負載的總多環芳香烴排放因子範圍為2791.1 – 7566.4 ng/g。4種蚊香燃煙微粒的幾何平均值為0.21 µm,且隨總微粒質量排放因子的增加,微粒的幾何平均粒徑呈現增加趨勢。微粒負載多環芳香烴的排放率和排放因子,主要分布在小於0.25 µm和0.25 – 0.5 µm的粒徑。另外,在16種多環芳香烴中以3環(Fluoranthene、Phenanthrene和Pyrene)的佔大多數;Benzo[a]pyrene、Benzo[a]anthracene、chrysene和Dibenzo[a,h]anthracene貢獻89.5 – 91.4 %的總多環芳香烴相當於BaP致癌潛力排放因子。
根據蚊香燃燒所產生的不同粒徑微粒負載多環芳香烴排放特性,我們建議使用含0.015 %美特寧的微煙蚊香,可以有效量減少蚊香燃燒所產生的總微粒質量與多環芳香烴排放量,可作為國內製蚊香產業發展低污染拜香的參考。

This study investigates polycyclic aromatic hydrocarbons emissionin particles of various sizes generated from smoldering different mosquito coils with different synthetic pyrethroid in a combustion test system. The PAHs content was quantified by gas chromatography/mass spectrometry.
Among the four brands of mosquito coil investigated, yielding the emission factor ranges for total particulate mass and PAHs were 31.0–70.3 mg/g and 2791.1–7566.4 ng/g, respectively. The particle and PAHs emission factors varied significantly, respectively. The average of geometric mean diameter (GMD) of particles for tested mosquito coil smoke was 0.21 µm. Total particle mass emission factors increasing upon increasing the GMD of particles. Total particle PAH and mass emission rates and factors were mainly < 0.25 µm and 0.25–0.5 µm in size. The emissions of three-ring PAHs predominated and the major species among the 16 PAHs were fluoranthene, phenanthrene and pyrene for most incense types. The benzo[a]pyrene, benzo[a]anthracene, chrysene, and dibenzo[a,h]anthracene accounted for 89.5–91.4% of the totaltoxic equivalency emission factor.
Based on information of particle PAH emissions for tested mosquito coils, we suggest that smoldering a very low-smoke mosquito coil with 0.015 % of metofluthrin to minimize production of total PAH emission factors for total particles.
誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究源起 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 蚊香的基本組成 3
2.2 蚊香內添加的環境用藥 3
2.3 蚊香燃燒所產生的空氣污染物 3
2.4 蚊香煙霧對健康的危害 4
2.5 多環芳香烴的簡介 4
2.6 多環芳香烴的物化特性 4
2.7 多環芳香烴的健康危害 4
2.8 多環芳香烴的特性比值 5
第三章 研究方法 6
3.1 蚊香燃燒測試系統 6
3.2 選擇蚊香 6
3.3 觀察燃燒速率 6
3.4 採樣蚊香微粒 6
3.5 分析多環芳香烴化學 7
3.6 分析數據處理 10
第四章 結果與討論 26
4.1 多環芳香烴分析品保與品管 26
4.2 蚊香燃燒速率 26
4.3 蚊香燃燒所產生微粒粒徑分布特性 26
4.4 蚊香燃燒產生微粒負載的多環芳香烴特徵比值 27
4.5 蚊香燃燒產生不同粒徑微粒的多環芳香烴濃度 27
4.6 蚊香燃燒產生不同粒徑微粒的多環芳香烴排放率 28
4.7 蚊香燃燒產生不同粒徑微粒的多環芳香烴排放因子 28
4.8 蚊香燃燒產生不同粒徑微粒的多環芳香烴排放相當於
BaP致癌潛力濃度 29
4.9 蚊香燃燒產生不同粒徑微粒的多環芳香烴排放相當於
BaP致癌潛力排放率 30
4.10 蚊香燃燒產生不同粒徑微粒的多環芳香烴排放相當於
BaP致癌潛力排放因子 31
4.11 蚊香燃燒產生微粒相多環芳香烴質量分率 32
第五章 結論與建議 92
第六章 參考文獻 93
1. Azizi, B.H.O. and Henry, R.L. (1991). The effects of indoor environmental factor on respiratory illness in primary school children in Kuala Lumpur. Int J Epidemiol 20(1):44-149.
2. Afghan, B.K. and Chau, A.S.Y. (1989). Analysis of Trace Organics in the Aquatic Environment, CRC Press, Inc., Boca Raton, lordia. 209-221.
3. Chang, J.Y. and Lin, J.M. (1998). Aliphatic aldehydes and allethrin in mosquito coil smoke. Chemosphere 36 (3):617–624.
4. Grimmer, G. (1983). Environmental Carcinogens:PAHs. Environ. Sci. Technol 24:1581-1585.
5. Hischenhuber, C. and Stijve, T. (1987). Determination of benzo(a)pyrene in roasted coffee and coffee brews by HPLC with fluorescence detection. Dtsch. Lebensm. Rundsch. 83:1-4.
6. International Agency for Research on Cancer. (1983). Polynuclear aromatic compounds, Part 1: chemical, environmental and experimental data. In: IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 32.
7. International Agency for Research on Cancer. (1987) Overall Envaluations of Carcinogenicity: an Updating of IARC Monographs Vol. 1-42. Monographs on the Evaluation of the Carcinogenic Rick of Chemicals to Humans, Suppl.
8. Koo, L.C.L. and Ho, J.H.C. (1994). Mosquito coil smoke and respiratory health among Hong Kong Chinese epidemiological studies. Indoor Environ 3: 304-310.
9. Lee, S.C. and Wang, B. (2006). Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos. Environ. 40:2128-2138.
10. Liu, W.K., Ng, T.B. and Wang C.C. (1989). Biochemical and cellular changes in bronchoalveolar lavaged samples from rats after inhalation of mosquito-coil smoke. Toxicol Lett 45:121-132.
11. Liu, W.K. and Sun, S.E. (1988). Ultrastructure changes of tracheal epithelium and alveolar macrophages of rats exposed to mosquito coil smoke. Toxicology Letter 41:145-157.
12. Liu, W.K., Wong, M.H. and Mui, Y.L. (1987). Toxic effects of mosquito coil (a mosquito repellent) smoke on rats. Toxicology Letter 39:223-230.
13. Liu, W.L., Zhang, J.F., Jamal, H.H., Juliana, J., Zailina, H., and Bernard, D.G. (2003). Mosquito coil emissions and health implications. Environmental Health Perspectives 111:1454-1460.
14. Lukwa, N. and Chandiwana, S.K. (1998). Efficacy of mosquito coils containing 0.3% and 0.4% pyethrins against an.gambiae sensu lato mosqutioes. Cent Afr J Med 44(4):104-107.
15. Mannino, M.R. and Orecchio, S. (2008). Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GC-MS analysis, distribution and sources. Atmos. Environ. 42:1801-1817.
16. Narendra, M., Bhatracharyulu, N.C., Padmavathi, P., Varadacharyulu, N.C., (2007). Prallethrininduced biochemicalchanges in erythrocytemembraneand red cellosmotic haemolysisin human volunteers. Chemosphere 67:1065-1071.
17. Nikolaou, k., Masclet, P. and Mouvier, G. (1984) Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the atmosphere — A critical review. Sci. Total Environ. 32:103-132.
18. Nisbet, C. and LaGcy, P. (1992). Toxic Equivalency Factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Reg Toxicol Pharmacol. 16:290-300.
19. Orecchio, S. (2011). Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos. Environ. 45:1888-1895.
20. Tsai, P.J., Shih, T.S., Chen, H.G., Lee, W.J., Lai, C.H. and Liou, S.H. (2004). Asseessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment 38:333-343.
21. Ramesh, A. and Vijayalakshmi, A. (2001). Monitoring of allethrin, deltamethrin, esbiothrin, prallethrin and transfluthrin in air during the use of household mosquito repellents. J. Environ. Monit 3:191-193.
22. Yunker, M.B., Macdonald, R.W., Vingarzan, R.M., Reginal, H., Goyette, D. and Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33:489-515.
23. Zhang, W. Sun, J. Chen, S. Wu, Y. and He, F. (1991). Levels of exposure and biological monitoring of pyrethroids in spray men. Br J Ind Med 48:82-86.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top