跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁慶全
研究生(外文):ToanDinh -Khanh
論文名稱:多元空間負載金屬氧化物二氧化鈦複合材料之特性鑑定及其處理染料廢水之研究
論文名稱(外文):Synthesis and Characterization of Metal Oxide-Loaded Hierarchical Titania Composites for Photocatalysis of Dye Wastewaters
指導教授:林錕松
指導教授(外文):Kuen-SongLin
口試委員:謝建德吳紀聖
口試委員(外文):Chien-TeHsiehChi-ShengWu
口試日期:2012-3-27
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:100
語文別:英文
論文頁數:257
中文關鍵詞:二氧化鈦奈米管多元空間花形二氧化鈦奈米結構水熱法可見光光觸媒染料廢水同步輻射光譜。
外文關鍵詞:Titanium dioxide nanotubeHierarchical flower-like TiO2 nanostructuresHydrothermalVisible-light photocatalystDye wastewaterXANES/EXAFS.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
近年來,半導體觸媒的異相光催化反應在環境污染防治的研究上相當廣泛,其中奈米二氧化鈦因具有高活性、化學穩定性、無毒性及容易取得之優點,故應用性極具潛力,為了增加二氧化鈦的表面積,本研究乃使用水熱法來製備高比面積二氧化鈦奈米管(TNs)及多元空間花形二氧化鈦奈米結構(HFTNs),具有不需繁複的設備及步驟即可得到大量的產物之優點,並且摻雜金屬以增加其可見光光催化能力,因此,本實驗之主要目的在於對TNs及HFTNs之水熱法合成條件及結構特性分析進行討論,並參雜金屬W至TNs及HFTNs中,以強化其光觸媒催化之性質;並探討TNs及HFTNs對6種不同特性染料廢水,測試其光催化之效能及求得反應動力參數。另外,亦深入瞭解HFTNs之特殊空間光反射精細結構,對提升光催化特性之影響。
實驗中二氧化鈦奈米管是以水熱法在10 M NaOH的濃度,150oC,24 h之條件下製備,並經酸洗過程製備TNs,接著以場發掃描式電子顯微鏡(FE-SEM)及穿透式電子顯微鏡(TEM)觀察其特性。結果顯示TNs的長度與直徑,分別分佈在400~1000和10~15 nm中。X射線光電子能譜(XPS)數據指出,TNs含有O和TiIV種元素,指出TNs樣品為高純度TiIV (93.95%)為主。所製備之TNs具有約292 m2/g的高比表面積,以及總孔洞體積1.026 cm3/g。為了改善TNs的光觸媒性質,不同含量的鎢(W) (5、10、15及20 wt%)以含浸法(Impregnation Method)負載在TNs奈米材料表面及結構中。增加W的含量,Ti 2p3/2分配給Ti4+的鍵結能將由459.36 eV增加到459.63 eV。XPS指出Ti 2p的鍵結能移動到較高能,顯示由於W參雜,造成TiO2的單位晶格的收縮。這些觀察表示W原子對TiO2晶格中Ti之取代作用。此外,分配給W的鍵結能亦增加,表示WO3單位晶格之收縮,乃由於WO3晶體中Ti之取代所導致。
二氧化鈦奈米管對6種染料溶液中的光分解效率程度之依序為:Methylene Blue (MB) > Basic Violet 3 (BV3) > Basic Violet 10 (BV10) > Acid Blue 9 (AB9) > Acid Orange 7 (AO7)> Acid Red 1 (AR1)。此外,負載金屬的W可以提升光觸媒效率,但染料降解的效率亦會隨著TNs上所負載的W含量增加而下降,其中以5 wt %之效率最佳,這指都顯示W金屬負載之TNs確實明顯促進光觸媒降解染料之效率。另外,本研究亦利用一個簡單的Langmuir-Hinshelwood model來計算ln(C0/Ca)對時間的關係,以描述其與廢水的2次反應;甲基藍之光催化反應參數k1 = 0.0068 min-1 及 k2 = 0.0001 min-1。W-loaded TNs的對6種染料溶液,其光降解效率依序為:MB (98.3%) > BV3 (72.58%) > BV10 (49.77%) > AB9 (14.95%) > AO7 (2.12%) > AR1 (0.54%)。其中亦發現由5 wt% W參雜之TNs在先前吸附程序階段後,其光觸媒效率(4.58-11.99%),增加程度高於TNs (1.74-2.94%)。
本論文亦成功地開發以水熱法製備多元空間花形二氧化鈦奈米結構(Hierarchical Flower-like TiO2 Nanostructures, HFTNs),作為不同光催化觸媒之比較。由於其特殊結構能顯著地增進鹼性染料在水溶液中之吸附能力和光觸媒性能。實驗中利用FE-SEM、HR-TEM、BET、XRD、XPS、SSNMR、EPR及XENAS/EXAFS貴重儀器可以瞭解HFTNs之結晶性、表面形態和精細結構特性。HFTNs的光降解效率對6種染料溶液中,在180 min後其染料光降解效率亦被研究及討論。HFTNs在先期吸附階段後,HFTNs光觸媒效率增加6.91-19.26%,較TNs (1.74-2.94%)以及W參雜之TNs (4.58-11.99%)要高出許多,顯示HFTNs光觸媒之光解效率較TNs為佳,乃因為其較多之{001}面比率之片狀特殊空間光反射結構及反應活性表面,讓光容易集中且不易被散射減弱其光強度,因而提升HFTNs光觸媒之染料光解效率。
Recently, titanium dioxide has been recognized as an excellent photocatalyst material applied on many field especially for environmental science or engineering. Titanium dioxide nanotubes (TNs) with high specific surface area have been studied due to its excellent catalytic activities, long-term stability, nontoxicity, and low cost. Therefore, the main objectives of the present study were the preparation of TNs and hierarchical flower-like TiO2 nanostructures (HFTNs) in large quantities by hydrothermal routes, and the characterization the photocatalytic properties, fine structures of TNs, HFTNs, and metallic doped TNs/HFTNs to understand the removal efficiencies of dye pollutants in wastewaters by using TNs/HFTNs.
Titanium dioxide nanotubes prepared by hydrothermal method at 150oC for 24 h, 10M NaOH solution, and with acid-wash were characterized using FE-SEM, and TEM techniques. The results showed that the lengths and diameters of nanotubes were ranged of 400~1000 and 10~15 nm, respectively. The XPS data indicated that TNs consist of Ti contributed mainly from TiIV and O, it indicated that TNs sample obtained high purity (93.35%) of TiIV. The prepared TNs exhibit high specific surface areas of ca. 292 m2/g and total pore volumes of 1.026 cm3/g. In order to improve the photocatalytic efficiency of TNs, different amount of W (5, 10, 15, and 20 wt%) with impregnation method were loaded in TNs. The Ti 2p3/2 binding energies assigned to Ti4+ increased from 459.36 to 459.63 eV with the increasing W contents. The XPS indicated binding energies of Ti2p shifted to the higher energies, indicating the contraction of the unit cells of TiO2 due to the W doping into their frameworks. These observations suggest the substitution of W for Ti in TiO2 lattice. Furthermore, the binding energies assigned to W4f also increased, suggesting the contraction of WO3 unit cells caused by the substitution of Ti in WO3 crystals.
The photodegradative efficiency order of TNs on six kinds of dyes solutions was Methylene Blue (MB) > Basic Violet 3 (BV3) > Basic Violet 10 (BV10) > Acid Blue 9 (AB9) > Acid Orange 7 (AO7)> Acid Red 1 (AR1). Moreover, loading W metal with promoting the photocatalytic efficiency was found, but the efficiency of dye remediation decreased with increasing of W-loaded percentages on TNs. It indicated that W-loaded TNs indeed influenced the photocatalytic efficiencies significantly. In addition, a simple Langmuir-Hinshelwood model was used and calculated by the relationship of ln(C0/Ca) versus time to describe the second-order reactions with the wastewaters. Methylene blue photodecomposion rates were highest with k1 of 0.0068 min-1 and k2 of 0.0001 min-1. The photodegradative efficiency of W-loaded TNs on six kinds of dyes solutions was MB (98.3%) > BV3 (72.58%) > BV10 (49.77%) > AB9 (14.95%) > AO7 (2.12%) > AR1 (0.54%) in series. It was found that the photocatalytic efficiency increase of 5 wt% W-doped TNs (4.58-11.99%) after the previous adsorption process was higher than that of TNs (1.74-2.94%).
In addition, a hydrothermal route for the preparation of HFTNs has been successfully developed that markedly enhance the adsorption and visible light photocatalytic capabilities of basic dyes in aqueous solution. Their crystallinity, surface morphology, and fine structures were investigated by FE-SEM, HR-TEM, BET, XRD, XPS, SSNMR, EPR, and XENAS/EXAFS. Order of the photodegradative efficiencies for six kinds of dyes solutions after 180 min onto HFTNs was also investigated. The photocatalytic efficiency increases of HFTNs (6.91-19.26%) after previous adsorption process was higher than the efficiencies of TNs (1.74-2.94%) and W-doped TNs (4.58-11.99%), respectively because the {001} facets of TiO2 nanosheets enhanced photocatalytic activity is seen on comparing it with TiO2 nanoparticles. The two-dimensional (2D) nanosheets with exposed {001} facets can more easily enhance the adsorption of dye pollutant molecules due to its highly reactive surface, which would lead to the enhancement of photocatalytic activity.
Table of Contents
摘 要 I
ABSTRACT I
Acknowledgement III
Table of Contents V
List of Figures X
List of Tables XVII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Scope of the Dissertation 3
Chapter 2 Literature Review 6
2.1 Titanium Dioxide and Titania Nanotubes 6
2.1.1 Titanium dioxide 6
2.1.2 Titania nanotubes 8
2.2 Fabrication of TNs 10
2.2.1 Hydrothermal methods 11
2.2.2 Template-assisted synthesis 14
2.2.3 Anodic oxidation process 15
2.3 Properties of Titanium Dioxide Powders and TNs 18
2.3.1 Crystal structure 18
2.3.2 Reactivity 20
2.3.3 Surface hydroxyl groups and surface charges 24
2.3.4 Electrical properties 25
2.3.5 Optical properties 27
2.4 Modification of TNs 31
2.4.1 Doping 32
2.4.2 Annealing 37
2.4.3 Filling and decoration 40
2.4.4 Monolayers 43
2.4.5 Conversion of tubes (titanates, semimetallic phase) 46
2.5 Applications of TNs 48
2.5.1 Photocatalysis under visible light 48
2.5.1.1 What is the photocatalyst? 48
2.4.1.2 Photocatalysis under visible light 49
2.5.1.3 Water purification 54
2.5.1.4 Water splitting to produce hydrogen 55
2.5.1.5 Chemical sensors 57
2.5.1.6 Anti-bacterial and cancer treatment 58
2.5.2 Dark photocatalysis 59
2.5.3 Solar cells 59
2.5.4 Drug delivery and the release of other payloads 63
2.5.5 Other applications and aspects 65
2.6 Hierarchical Flower-like TiO2Nanostructures with {001}Facets Active 67
Chapter 3 Experimental Methodology 72
3.1 Synthesis of TNs and W-doped TNs 72
3.1.1 Titania nanotubes 72
3.1.2 Preparation of W-doped TNs 76
3.2 Synthesis of Hierarchical Flower-like TiO2Nanostructures 76
3.3 Adsorption and Photocatalysis of Different Dyes on TNs, W-doped TNs and Hierarchical Flower-like TiO2 Nanostructures 78
3.4 X-Ray Powder Diffraction 80
3.5 Field-Emission Scanning Electron Microscopy (FE-SEM) 81
3.6 Low-Magnification Transmission Electron Microscope (TEM) and High-Resolution Transmission Electron Microscope (HR-TEM) 83
3.7 Thermo Gravimetric Analysis/Differential Thermal Analysis (TGA/DTA) 86
3.8 Nitrogen Adsorption Isotherm (ASAP) 88
3.9 X-ray Photoelectron Spectroscopy (XPS) 93
3.10 Solid-State Nuclear Magnetic Resonance (SSNMR) 96
3.11 Electron Paramagnetic Resonance 100
3.12 X-ray Absorption Spectroscopy (XANES and EXAFS) 104
3.10.1 Fundamentals of XANES and EXAFS 104
3.10.2 Experiments of EXAFS and XANES 105
Chapter 4 Results and Discussion 107
4.1 Characterization of Titania Nanotubes 107
4.1.1 FE-SEM and HR-TEM analysis for the identification of TNs structure 107
4.1.2 X-Ray diffraction for the identification of TNs structure 113
4.1.3 Nitrogen adsorption for the identification of TNs structure 115
4.1.4 Synchrotron radiation analysis for the identification of TNs structure 118
4.1.5 X-ray photoelectron spectrum analysis for the identification of TNs structure 123
4.1.5.1 High resolution spectra of the Ti 2p region 124
4.1.5.2 High resolution spectra of the O 1s region 128
4.1.6 Fourier transform infrared spectroscopy analysis for the identification of TNs structure 130
4.2 Tungsten Doped Titania Nanotubes 131
4.2.1 FE-SEM and HR-TEM analysis for the identification of W-doped TNs structure 131
4.2.2 X-Ray diffraction for the identification of W-doped TNs structure 134
4.2.3 Nitrogen adsorption for the identification of W-doped TNs structure 135
4.2.4 X-ray photoelectron spectrum analysis for the identification of W-doped TNs structure 139
4.2.5 Synchrotron radiation analysis for the identification of W-doped TNs structure 146
4.2.6 UV-vis diffuse reflectance spectra analysis for the identification of W-doped TNs structure 153
4.2.7 Fourier transform infrared spectroscopy analysis for the identification of W-doped TNs structure 155
4.2.8 Solid-state nuclear magnetic resonance analysis for the identification of TNs and W-doped TNs structure 156
4.3Absorption and Photocatalysis Six Dyes by TNs and W-doped TNs 158
4.3.1 Analysis of adsorption and photocatalysis kinetics 158
4.3.2 Analysis of adsorption and photocatalysis mechanisms 173
4.4 Characterization of Hierarchical Flower-like TiO2Nanostructures 185
4.4.1 FE-SEM and HR-TEM analysis for the identification of hierarchical flower-like TiO2 nanostructures 185
4.4.2 X-Ray diffraction for the identification of hierarchical flower-like TiO2 nanostructures 189
4.4.3 X-ray photoelectron spectrum analysis for the identification of hierarchical flower-like TiO2 nanostructures 190
4.4.4 Nitrogen adsorption for the identification of hierarchical flower-like TiO2 nanostructures 194
4.5 Adsorption and Photocatalysis Six Dyes by Hierarchical Flower-like TiO2 Nanostructures 197
4.5.1 Photocatalysis six dye by hierarchical flower-like TiO2 nanostructures under different concentration 197
4.5.2 Comparison photocatalysis between TNs, HFTNs, P25 and P25-HF 206
Chapter 5 Conclusions 208
5.1 Conclusions 208
5.2 Future works 212
References 213
1.Borker P. and Salker A.V., Photocatalytic degradation of textile azo dye over Ce1-xSnxO2 series. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006. 133(1-3), 55-60.
2.Coleman H.M., Eggins B.R., Byrne J.A., Palmer F.L. and King E., Photocatalytic degradation of 17-β-oestradiol on immobilised TiO2. Applied Catalysis B: Environmental, 2000. 24(1), L1-L5.
3.Hong C.S., Wang Y. and Bush B., Kinetics and products of the TiO2 photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere, 1998. 36(7), 1653-1667.
4.Ohko Y., Ando I., Niwa C., Tatsuma T., Yamamura T., Nakashima T., Kubota Y. and Fujishima A., Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental Science and Technology, 2001. 35(11), 2365-2368.
5.Fujishima A. and Honda K., Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358), 37-38.
6.Hoyer P., Formation of a titanium dioxide nanotube array. Langmuir, 1996. 12(6), 1411-1413.
7.Jung J.H., Kobayashi H., Van Bommel K.J.C., Shinkai S. and Shimizu T., Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chemistry of Materials, 2002. 14(4), 1445-1447.
8.Lee J.H., Leu I.C., Hsu M.C., Chung Y.W. and Hon M.H., Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. Journal of Physical Chemistry B, 2005. 109(27), 13056-13059.
9.Kasuga T., Hiramatsu M., Hoson A., Sekino T. and Niihara K., Formation of titanium oxide nanotube. Langmuir, 1998. 14(12), 3160-3163.
10.Ghicov A., Tsuchiya H., MacAk J.M. and Schmuki P., Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications, 2005. 7(5), 505-509.
11.Gong D., Grimes C.A., Varghese O.K., Hu W., Singh R.S., Chen Z. and Dickey E.C., Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001. 16(12), 3331-3334.
12.Tsuchiya H., Macak J.M., Taveira L., Balaur E., Ghicov A., Sirotna K. and Schmuki P., Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochemistry Communications, 2005. 7(6), 576-580.
13.Varghese O.K., Gong D., Paulose M., Grimes C.A. and Dickey E.C., Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. Journal of Materials Research, 2003. 18(1), 156-165.
14.Varghese O.K., Paulose M., Shankar K., Mor G.K. and Grimes C.A., Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. Journal of Nanoscience and Nanotechnology, 2005. 5(7), 1158-1165.
15.Zwilling V., Darque-Ceretti E., Boutry-Forveille A., David D., Perrin M.Y. and Aucouturier M., Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surface and Interface Analysis, 1999. 27(7), 629-637.
16.Chen Q., Du G.H., Zhang S. and Peng L.M., The structure of trititanate nanotubes. Acta Crystallographica Section B: Structural Science, 2002. 58(4), 587-593.
17.Chen Q., Zhou W., Du G.H. and Peng L.M., Trititanate nanotubes made via a single alkali treatment. Advanced Materials, 2002. 14(17), 1208-1211+1178.
18.Du G.H., Chen Q., Che R.C., Yuan Z.Y. and Peng L.M., Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters, 2001. 79(22), 3702-3704.
19.Kasuga T., Hiramatsu M., Hoson A., Sekino T. and Niihara K., Titania nanotubes prepared by chemical processing. Advanced Materials, 1999. 11(15), 1307-1311.
20.Mor G.K., Varghese O.K., Paulose M., Shankar K. and Grimes C.A., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 2006. 90(14), 2011-2075.
21.Thorne A., Kruth A., Tunstall D., Irvine J.T.S. and Zhou W., Formation, structure, and stability of titanate nanotubes and their proton conductivity. Journal of Physical Chemistry B, 2005. 109(12), 5439-5444.
22.Yang J., Jin Z., Wang X., Li W., Zhang J., Zhang S., Guo X. and Zhang Z., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Journal of the Chemical Society. Dalton Transactions, 2003(20), 3898-3901.
23.Zhang M., Jin Z., Zhang J., Guo X., Yang J., Li W., Wang X. and Zhang Z., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. Journal of Molecular Catalysis A: Chemical, 2004. 217(1-2), 203-210.
24.Zhang S., Li W., Jin Z., Yang J., Zhang J., Du Z. and Zhang Z., Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid. Journal of Solid State Chemistry, 2004. 177(4-5), 1365-1371.
25.Zhang S., Peng L.M., Chen Q., Du G.H., Dawson G. and Zhou W.Z., Formation Mechanism of H2Ti3O7 Nanotubes. Physical Review Letters, 2003. 91(25), 2561031-2561034.
26.Li Puma G., Bono A. and Collin J.G., Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. Journal of Hazardous Materials, 2008. 157(2-3), 209-219.
27.Meacock G., Taylor K.D.A., Knowles M.J. and Himonides A., The improved whitening of minced cod flesh using dispersed titanium dioxide. Journal of the Science of Food and Agriculture, 1997. 73(2), 221-225.
28.Aramendia M.A., Marinas A., Marinas J.M., Moreno J.M. and Urbano F.J., Photocatalytic degradation of herbicide fluroxypyr in aqueous suspension of TiO2. Catalysis Today, 2005. 101(3-4 SPEC. ISS.), 187-193.
29.Guillard C., Lachheb H., Houas A., Ksibi M., Elaloui E. and Herrmann J.M., Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 158(1), 27-36.
30.Malato S., Blanco J., Campos A., Caceres J., Guillard C., Herrmann J.M. and Fernandez-Alba A.R., Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Applied Catalysis B: Environmental, 2003. 42(4), 349-357.
31.Fujishima A., Rao T.N. and Tryk D.A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1), 1-21.
32.Zhiyong Y., Bensimon M., Sarria V., Stolitchnov I., Jardim W., Laub D., Mielczarski E., Mielczarski J., Kiwi-Minsker L. and Kiwi J., ZnSO4-TiO2 doped catalyst with higher activity in photocatalytic processes. Applied Catalysis B: Environmental, 2007. 76(1-2), 185-195.
33.Zhiyong Y., Keppner H., Laub D., Mielczarski E., Mielczarski J., Kiwi-Minsker L., Renken A. and Kiwi J., Photocatalytic discoloration of Methyl Orange on innovative parylene-TiO2 flexible thin films under simulated sunlight. Applied Catalysis B: Environmental, 2008. 79(1), 63-71.
34.Krishna V., Yanes D., Imaram W., Angerhofer A., Koopman B. and Moudgil B., Mechanism of enhanced photocatalysis with polyhydroxy fullerenes. Applied Catalysis B: Environmental, 2008. 79(4), 376-381.
35.Iijima S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348), 56-58.
36.Lieber C.M., One-dimensional nanostructures: Chemistry, physics &; applications. Solid State Communications, 1998. 107(11), 607-616.
37.Rao C.N.R., Muller A. and Cheetham A.K., The Chemistry of Nanomaterials: Synthesis, Properties and Applications, 2004.
38.Rao C.N.R. and Nath M., Dalton Trans., 2003, 1.
39.Tenne R., Margulis L., Genut M. and Hodes G., Polyhedral and cylindrical structures of tungsten disulphide. Nature, 1992. 360(6403), 444-446.
40.Feldman Y., Wasserman E., Srolovitz D.J. and Tenne R., High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science, 1995. 267(5195), 222-225.
41.Bavykin D.V., Friedrich J.M. and Walsh F.C., Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Advanced Materials, 2006. 18(21), 2807-2824.
42.Krumeich F., Muhr H.J., Niederberger M., Bieri F., Schnyder B. and Nesper R., Morphology and topochemical reactions of novel vanadium oxide nanotubes. Journal of the American Chemical Society, 1999. 121(36), 8324-8331.
43.Pu L., Bao X., Zou J. and Feng D., Individual alumina nanotubes. Angewandte Chemie - International Edition, 2001. 40(8), 1490-1493.
44.Kudo A. and Miseki Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1), 253-278.
45.Sides C.R., Li N., Patrissi C.J., Scrosati B. and Martin C.R., Nanoscale materials for lithium-ion batteries. MRS Bulletin, 2002. 27(8), 604-607+596.
46.Gerischer H. and Tributsch H., Ber. Bunsen-Ges., 1968. 72, 437.
47.Dare-Edwards M.P., Goodenough J.B., Hamnett A., Seddon K.R. and Wright R.D., Sensitisation of semiconducting electrodes with ruthenium-based dyes. Faraday Discussions of the Chemical Society, 1980. 70, 285-298.
48.O'Regan B. and Gratzel M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346), 737-740.
49.Gratzel M., Photoelectrochemical cells. Nature, 2001. 414(6861), 338-344.
50.Huang S.Y., Kavan L., Exnar I. and Gratzel M., Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). Journal of the Electrochemical Society, 1995. 142(9), L142-L144.
51.Huusko J., Lantto V. and Torvela H., TiO2 thick-film gas sensors and their suitability for NOx monitoring. Sensors and Actuators: B. Chemical, 1993. 16(1-3), 245-248.
52.Linsebigler A.L., Lu G. and Yates Jr J.T., Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 1995. 95(3), 735-758.
53.Armstrong A.R., Armstrong G., Canales J., Garcia R. and Bruce P.G., Lithium-ion intercalation into TiO2-B nanowires. Advanced Materials, 2005. 17(7), 862-865.
54.Roy P., Kim D., Lee K., Spiecker E. and Schmuki P., TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2010. 2(1), 45-59.
55.Ghicov A. and Schmuki P., Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chemical Communications, 2009(20), 2791-2808.
56.Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S. and Schmuki P., TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 2007. 11(1-2), 3-18.
57.Diebold U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5-8), 53-229.
58.Hagfeld A. and Gratzel M., Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995. 95(1), 49-68.
59.Mills A. and Le Hunte S., An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997. 108(1), 1-35.
60.Poudel B., Wang W.Z., Dames C., Huang J.Y., Kunwar S., Wang D.Z., Banerjee D., Chen G. and Ren Z.F., Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology, 2005. 16(9), 1935-1940.
61.Ou H.H. and Lo S.L., Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology, 2007. 58(1), 179-191.
62.Nakahira A., Kato W., Tamai M., Isshiki T., Nishio K. and Aritani H., Synthesis of nanotube from a layered H2Ti4O9‧ H2O in a hydrothermal treatment using various titania sources. Journal of Materials Science, 2004. 39(13), 4239-4245.
63.Ma R., Fukuda K., Sasaki T., Osada M. and Bando Y., Structural features of titanate nanotubes/nanobelts revealed by raman, X-ray absorption fine structure and electron diffraction characterizations. Journal of Physical Chemistry B, 2005. 109(13), 6210-6214.
64.Ma R., Bando Y. and Sasaki T., Nanotubes of lepidocrocite titanates. Chemical Physics Letters, 2003. 380(5-6), 577-582.
65.Morgado Jr E., de Abreu M.A.S., Pravia O.R.C., Marinkovic B.A., Jardim P.M., Rizzo F.C. and Araajo A.S., A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sciences, 2006. 8(8), 888-900.
66.Tsai C.C. and Teng H., Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chemistry of Materials, 2006. 18(2), 367-373.
67.Seo D.S., Lee J.K. and Kim H., Preparation of nanotube-shaped TiO2 powder. Journal of Crystal Growth, 2001. 229(1), 428-432.
68.Zhang Q.H., Gao L., Zheng S. and Sun J., Preparation of long TiO2 nanotubes with uniform morphology. Acta Chimica Sinica, 2002. 60(8), 1439-1444.
69.Zhu Y., Li H., Koltypin Y., Hacohen Y.R. and Gedanken A., Sonochemical synthesis of titania whiskers and nanotubes. Chemical Communications, 2001(24), 2616-2617.
70.Yang J., Jin Z., Wang X., Li W., Zhang J., Zhang S., Guo X. and Zhang Z., Dalton Trans., 2003. 20, 3898-3901.
71.Yuan Z.Y. and Su B.L., Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004. 241(1-3), 173-183.
72.Kawai S. and Ueda R., Magnetic properties of anodic oxide coatings on Aluminum containing electrodeposited Co and Co-Ni. Journal of the Electrochemical Society, 1975. 122(1), 32-36.
73.Cao G. and Liu D., Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science, 2008. 136(1-2), 45-64.
74.Michailowski A., Almawlawi D., Cheng G. and Moskovits M., Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chemical Physics Letters, 2001. 349(1-2), 1-5.
75.Sander M.S., CA’tAc M.J., Gu W., Kile B.M. and Tripp C.P., Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Advanced Materials, 2004. 16(22), 2052-2057.
76.Martin C.R., Membrane-based synthesis of nanomaterials. Chemistry of Materials, 1996. 8(8), 1739-1746.
77.Lakshmi B.B., Dorhout P.K. and Martin C.R., Sol-Gel Template Synthesis of Semiconductor Nanostructures. Chemistry of Materials, 1997. 9(3), 857-862.
78.Zwilling V., Aucouturier M. and Darque-Ceretti E., Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochimica Acta, 1999. 45(6), 921-929.
79.Paulose M., Shankar K., Yoriya S., Prakasam H.E., Varghese O.K., Mor G.K., Latempa T.A., Fitzgerald A. and Grimes C.A., Anodic growth of highly ordered TiO2 nanotube arrays to 134 m in length. Journal of Physical Chemistry B, 2006. 110(33), 16179-16184.
80.Cai Q., Paulose M., Varghese O.K. and Grimes C.A., The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research, 2005. 20(1), 230-236.
81.Ruan C., Paulose M., Varghese O.K., Mor G.K. and Grimes C.A., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry B, 2005. 109(33), 15754-15759.
82.Hoffmann M.R., Martin S.T., Choi W. and Bahnemann D.W., Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995. 95(1), 69-96.
83.Thompson T.L. and Yates Jr J.T., Surface science studies of the photoactivation of TiO2 - New photochemical processes. Chemical Reviews, 2006. 106(10), 4428-4453.
84.Marchand R., Brohan L. and Tournoux M., TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull., 1980. 15, 1129-1133.
85.Muscat J., Swamy V. and Harrison N.M., First-principles calculations of the phase stability of TiO2. Physical Review B - Condensed Matter and Materials Physics, 2002. 65(22), 2241121-22411215.
86.Lazzeri M., Vittadini A. and Selloni A., Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B - Condensed Matter and Materials Physics, 2001. 63(15), 1554091-1554099.
87.Kunze J., Seyeux A. and Schmuki P., Anodic TiO2 layer conversion: Fluoride-induced rutile formation at room temperature. Electrochemical and Solid-State Letters, 2008. 11(2), K11-K13.
88.Aruna S.T., Tirosh S. and Zaban A., Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. Journal of Materials Chemistry, 2000. 10(10), 2388-2391.
89.Huang W., Tang X., Wang Y., Koltypin Y. and Gedanken A., Selective synthesis of anatase and rutile via ultrasound irradiation. Chemical Communications, 2000(15), 1415-1416.
90.Yin H., Wada Y., Kitamura T., Kambe S., Murasawa S., Mori H., Sakata T. and Yanagida S., Hydrothermal synthesis of nanosized anatase and ruffle TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 2001. 11(6), 1694-1703.
91.Kelly J.J., The influence of fluoride ions on the passive dissolution of titanium. Electrochimica Acta, 1979. 24(12), 1273-1282.
92.Aladjem A., Brandon D.G., Yahalom J. and Zahavi J., Electron-beam crystallization of anodic oxide films. Electrochimica Acta, 1970. 15(5), 663-671.
93.Ohtsuka T., Guo J. and Sato N., Raman Spectra of the Anodic Oxide Film on Titanium in Acidic Sulfate and Neutral Phosphate Solutions. Journal of the Electrochemical Society, 1986. 133(12), 2473-2476.
94.Ohtsuka T. and Otsuki T., The aging of the anodic oxide of titanium during potentiostatic condition by ellipsometry. Corrosion Science, 2003. 45(8), 1793-1801.
95.Smith J.R., Walsh F.C. and Clarke R.L., Electrodes based on Magnali phase titanium oxides: The properties and applications of Ebonexa materials. Journal of Applied Electrochemistry, 1998. 28(10), 1021-1033.
96.Zweynert M., Daring H., Garche J., Enghardt K. and Wiesener K., Use of Magneli Phases of Titanium Diooxide in Electrochemical Technology. Anwendung von Magnali-Phasen des Titandioxids in der elektrochemischen Technologie, 1998. 70(7), 827-841.
97.Schmidt-Stein F., Thiemann S., Berger S., Hahn R. and Schmuki P., Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Materialia, 2010. 58(19), 6317-6323.
98.Albu S.P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G.E., Macak J.M. and Schmuki P., Formation of double-walled TiO2 nanotubes and robust anatase membranes. Advanced Materials, 2008. 20(21), 4135-4139.
99.Albu S.P., Tsuchiya H., Fujimoto S. and Schmuki P., TiO2 nanotubes - Annealing effects on detailed morphology and structure. European Journal of Inorganic Chemistry, 2010(27), 4351-4356.
100.Beranek R., Hildebrand H. and Schmuki P., Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochemical and Solid-State Letters, 2003. 6(3), B12-B14.
101.Delplancke J.L., Garnier A., Massiani Y. and Winand R., Influence of the anodizing procedure on the structure and the properties of titanium oxide films and its effect on copper nucleation. Electrochimica Acta, 1994. 39(8-9), 1281-1289.
102.Macak J.M., Hildebrand H., Marten-Jahns U. and Schmuki P., Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 2008. 621(2), 254-266.
103.Marchenoir J.C., Loup J.P. and Masson J., Etude des couches poreuses formees par oxydation anodique du titane sous fortes tensions. Thin Solid Films, 1980. 66(3), 357-369.
104.Arbiol J., Cerda J., Dezanneau G., Cirera A., Peira F., Cornet A. and Morante J.R., Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. Journal of Applied Physics, 2002. 92(2), 853.
105.Ghicov A., Aldabergenova S., Tsuchyia H. and Schmuki P., TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. Angewandte Chemie - International Edition, 2006. 45(42), 6993-6996.
106.Yasuda K. and Schmuki P., Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Advanced Materials, 2007. 19(13), 1757-1760.
107.Depero L.E., Marino A., Allieri B., Bontempi E., Sangaletti L., Casale C. and Notaro M., Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations. Journal of Materials Research, 2000. 15(10), 2080-2086.
108.Depero L.E., Sangaletti L., Allieri B., Bontempi E., Marino A. and Zocchi M., Correlation between crystallite sizes and microstrains in TiO2 nanopowders. Journal of Crystal Growth, 1999. 198-199(PART I), 516-520.
109.Guidi V., Carotta M.C., Ferroni M., Martinelli G. and Sacerdoti M., Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile. Journal of Physical Chemistry B, 2003. 107(1), 120-124.
110.Aldabergenova S.B., Ghicov A., Albu S., Macak J.M. and Schmuki P., Smooth titania nanotubes: Self-organization and stabilization of anatase phase. Journal of Non-Crystalline Solids, 2008. 354(19-25), 2190-2194.
111.Likodimos V., Stergiopoulos T., Falaras P., Kunze J. and Schmuki P., Phase composition, size, orientation, and antenna effects of self-assembled anodized titania nanotube arrays; a polarized micro-raman investigation. Journal of Physical Chemistry C, 2008. 112(33), 12687-12696.
112.Nah Y.C., Ghicov A., Kim D., Berger S. and Schmuki P., TiO2-WO3 composite nanotubes by alloy anodization: Growth and enhanced electrochromic properties. Journal of the American Chemical Society, 2008. 130(48), 16154-16155.
113.Funk S. and Burghaus U., CO oxidation on anatase TiO2 nanotubes array and the effect of defects. Catalysis Letters, 2007. 118(1-2), 118-122.
114.Kunat M. and Burghaus U., Adsorption of CO on rutile (1 x 1)-TiO2(1 1 0): A molecular beam study. Surface Science, 2003. 544(2-3), 170-182.
115.Parvulescu V.I., Grange P. and Delmon B., Catalytic removal of NO. Catalysis Today, 1998. 46(4), 233-316.
116.Funk S., Hokkanen B., Burghaus U., Ghicov A. and Schmuki P., Unexpected adsorption of oxygen on TiO2 nanotube arrays: Influence of crystal structure. Nano Letters, 2007. 7(4), 1091-1094.
117.Hokkanen B., Funk S., Burghaus U., Ghicov A. and Schmuki P., Adsorption kinetics of alkanes on TiO2 nanotubesarray - structure-activity relationship. Surface Science, 2007. 601(19), 4620-4628.
118.Kunat M., Burghaus U. and Woll C., The adsorption of hydrogen on the rutile TiO2(110) surface. Physical Chemistry Chemical Physics, 2004. 6(16), 4203-4207.
119.Kiennemann A., Study of the mechanism of higher alcohol synthesis on Cu-ZnO-Al2O3 catalysts by catalytic tests, probe molecules, and temperature programmed desorption studies. Industrial and Engineering Chemistry Research, 1991. 30(6), 1130-1138.
120.Smith K.E. and Henrich V.E., Interaction of SO2 and CO with the Ti2O3(1012) surface. Physical Review B, 1985. 32(8), 5384-5390.
121.Gopel W., Rocker G. and Feierabend R., Intrinsic defects of TiO2(110): Interaction with chemisorbed O2, H2, CO, and CO2. Physical Review B, 1983. 28(6), 3427-3438.
122.Peacock P.W. and Robertson J., Behavior of hydrogen in high dielectric constant oxide gate insulators. Applied Physics Letters, 2003. 83(10), 2025-2027.
123.Robertson J. and Peacock P.W., Doping and hydrogen in wide gap oxides. Thin Solid Films, 2003. 445(2), 155-160.
124.Lu G., Linsebigler A. and Yates Jr J.T., Ti3+ defect sites on TiO2(110): Production and chemical detection of active sites. Journal of Physical ChemistryAR, 1994. 98(45), 11733-11738.
125.Smith K.E. and Henrich V.E., Interaction of H2S with high defect density TiO2(110) surfaces. Surface Science, 1989. 217(3), 445-458.
126.Kim K.S., Barteau M.A. and Farneth W.E., Adsorption and decomposition of aliphatic alcohols on TiO2. Langmuir, 1988. 4(3), 533-543.
127.Kurtz R.L., Stock-Bauer R., Msdey T.E., RomA!n E. and De Segovia J., Synchrotron radiation studies of H2O adsorption on TiO2(110). Surface Science, 1989. 218(1), 178-200.
128.Beranek R., Tsuchiya H., Sugishima T., Macak J.M., Taveira L., Fujimoto S., Kisch H. and Schmuki P., Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Applied Physics Letters, 2005. 87(24), 1-3.
129.Ghicov A., Tsuchiya H., Macak J.M. and Schmuki P., Annealing effects on the photoresponse of TiO2 nanotubes. Physica Status Solidi (A) Applications and Materials, 2006. 203(4), R28-R30.
130.Munoz A.G., Chen Q. and Schmuki P., Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry, 2007. 11(8), 1077-1084.
131.Schultze J.W. and Lohrengel M.M., Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochimica Acta, 2000. 45(15-16), 2499-2513.
132.Taveira L.V., SagC˜s A.A., MacAk J.M. and Schmuki P., Impedance behavior of TiO2 nanotubes formed by anodization in NaF electrolytes. Journal of the Electrochemical Society, 2008. 155(6), C293-C302.
133.Tsuchiya H., Macak J.M., Ghicov A., RA¤der A.S., Taveira L. and Schmuki P., Characterization of electronic properties of TiO2 nanotube films. Corrosion Science, 2007. 49(1), 203-210.
134.Cronemeyer D.C., Electrical and optical properties of rutile single crystals. Physical Review, 1952. 87(5), 876-886.
135.Kavan L., Gratzel M., Gilbert S.E., Klemenz C. and Scheel H.J., Electrochemical and photoelectrochemical investigation of single-crystal anatase. Journal of the American Chemical Society, 1996. 118(28), 6716-6723.
136.Oi T., Electrochromic Materials. Annual Review of Materials Science, 1986. 16, 185-201.
137.Randin J.P., Chemical and electrochemical stability of WO3 electrochromic films in liquid electrolytes. Journal of Electronic Materials, 1978. 7(1), 47-63.
138.Macak J.M., Schmidt-Stein F. and Schmuki P., Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochemistry Communications, 2007. 9(7), 1783-1787.
139.Hu F., Ding F., Song S. and Shen P.K., Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. Journal of Power Sources, 2006. 163(1 SPEC. ISS.), 415-419.
140.Macak J.M., Barczuk P.J., Tsuchiya H., Nowakowska M.Z., Ghicov A., Chojak M., Bauer S., Virtanen S., Kulesza P.J. and Schmuki P., Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. Electrochemistry Communications, 2005. 7(12), 1417-1422.
141.Qu J., Zhang X., Wang Y. and Xie C., Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochimica Acta, 2005. 50(16-17), 3576-3580.
142.Wang M., Guo D.J. and Li H.L., High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry, 2005. 178(6), 1996-2000.
143.Tanahashi I., Iwagishi H. and Chang G., Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Materials Letters, 2008. 62(17-18), 2714-2716.
144.Eremia S.A.V., Chevalier-Lucia D., Radu G.L. and Marty J.L., Optimization of hydroxyl radical formation using TiO2 as photocatalyst by response surface methodology. Talanta, 2008. 77(2), 858-862.
145.Kesselman J.M., Weres O., Lewis N.S. and Hoffmann M.R., Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways. Journal of Physical Chemistry B, 1997. 101(14), 2637-2643.
146.Turchi C.S. and Ollis D.F., Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. Journal of Catalysis, 1990. 122(1), 178-192.
147.Qian L., Zhang T., Wageh S., Jin Z.S., Du Z.L., Wang Y.S. and Xu X.R., Study of blue electroluminescence from titania nanotubes doped into a polymeric matrix. Nanotechnology, 2006. 17(1), 100-104.
148.Bourgeois S., Jomard F. and Perdereau M., Use of isotopic labelling in a SIMS study of the hydroxylation of TiO2(100) surfaces. Surface Science, 1992. 279(3), 349-354.
149.Kim K.W., Lee E.H., Kim Y.J., Lee M.H., Kim K.H. and Shin D.W., A relation between the non-stoichiometry and hydroxyl radical generated at photocatalytic TiO2 on 4CP decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 159(3), 301-310.
150.Janusz W., Sworska A. and Szczypa J., The structure of the electrical double layer at the titanium dioxide/ethanol solutions interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 152(3), 223-233.
151.Nelson B.P., Candal R., Corn R.M. and Anderson M.A., Control of surface and Zeta potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions. Langmuir, 2000. 16(15), 6094-6101.
152.Erdem B., Hunsicker R.A., Simmons G.W., David Sudol E., Dimonie V.L. and El-Aasser M.S., XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir, 2001. 17(9), 2664-2669.
153.Martra G., Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Applied Catalysis A: General, 2000. 200(1), 275-285.
154.Papp J., Soled S., Dwight K. and Wold A., Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts. Chemistry of Materials, 1994. 6(4), 496-500.
155.Bacsa R.R. and Kiwi J., Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B: Environmental, 1998. 16(1), 19-29.
156.Dutta P.K., Ray A.K., Sharma V.K. and Millero F.J., Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid And Interface Science, 2004. 278(2), 270-275.
157.Tokudome H. and Miyauchi M., Titanate nanotube thin films via alternate layer deposition. Chemical Communications, 2004. 10(8), 958-959.
158.Wang N., Lin H., Li J., Yang X. and Chi B., Electrophoretic deposition and optical property of titania nanotubes films. Thin Solid Films, 2006. 496(2), 649-652.
159.Liang H.c., Li X.z., Yang Y.h. and Sze K.h., Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere, 2008. 73(5), 805-812.
160.Tighineanu A., Ruff T., Albu S., Hahn R. and Schmuki P., Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. Chemical Physics Letters, 2010. 494(4-6), 260-263.
161.Asahi R., Taga Y., Mannstadt W. and Freeman A.J., Electronic and optical properties of anatase TiO2. Physical Review B - Condensed Matter and Materials Physics, 2000. 61(11), 7459-7465.
162.Wu Z.Y., Ouvrard G., Gressier P. and Natoli C.R., Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra. Physical Review B - Condensed Matter and Materials Physics, 1997. 55(16), 10382-10391.
163.Eufinger K., Poelman D., Poelman H., De Gryse R. and Marin G.B., Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Applied Surface Science, 2007. 254(1 SPEC. ISS.), 148-152.
164.Pascual J., Camassel J. and Mathieu H., Fine structure in the intrinsic absorption edge of TiO2. Physical Review B, 1978. 18(10), 5606-5614.
165.Tang H., Prasad K., SanjinA‥s R., Schmid P.E. and LAcvy F., Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics, 1994. 75(4), 2042-2047.
166.Forro L., Chauvet O., Emin D., Zuppiroli L., Berger H. and LAcvy F., High mobility n-type charge carriers in large single crystals of anatase (TiO2). Journal of Applied Physics, 1994. 75(1), 633-635.
167.Lynch R.P., Ghicov A. and Schmuki P., A photo-electrochemical investigation of self-organized TiO2 nanotubes. Journal of the Electrochemical Society, 2010. 157(3), G76-G84.
168.Gartner W.W., Depletion-layer photoeffects in semiconductors. Physical Review, 1959. 116(1), 84-87.
169.Sergentu V.V., Tiginyanu I.M., Ursaki V.V., Enachi M., Albu S.P. and Schmuki P., Prediction of negative index material lenses based on metallo-dielectric nanotubes. Physica Status Solidi - Rapid Research Letters, 2008. 2(5), 242-244.
170.Aronson B.J., Blanford C.F. and Stein A., Solution-Phase Grafting of Titanium Dioxide onto the Pore Surface of Mesoporous Silicates: Synthesis and Structural Characterization. Chemistry of Materials, 1997. 9(12), 2842-2851.
171.Dong W., Bongard H., Tesche B. and Marlow F., Inverse opals with a skeleton structure: Photonic crystals with two complete bandgaps. Advanced Materials, 2002. 14(20), 1457-1460.
172.Holland B.T., Blanford C.F. and Stein A., Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998. 281(5376), 538-540.
173.Wei W., Jha H., Yang G., Hahn R., Paramasivam I., Berger S., Spiecker E. and Schmuki P., Formation of self-organized superlattice nanotube arrays-embedding heterojunctions into nanotube walls. Advanced Materials, 2010. 22(42), 4770-4774.
174.Anpo M., Photocatalysis on titanium oxide catalysts - Approaches in achieving highly efficient reactions and realizing the use of visible light. Catalysis Surveys from Japan, 1997. 1(2), 169-179.
175.Sato S., Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters, 1986. 123(1-2), 126-128.
176.Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001. 293(5528), 269-271.
177.Murphy A.B., Does carbon doping of TiO2 allow water splitting in visible light? Comments on "Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting". Solar Energy Materials and Solar Cells, 2008. 92(3), 363-367.
178.Ohno T., Mitsui T. and Matsumura M., Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters, 2003. 32(4), 364-365.
179.Umebayashi T., Yamaki T., Itoh H. and Asai K., Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 2002. 81(3), 454-456.
180.Umebayashi T., Yamaki T., Tanaka S. and Asai K., Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters, 2003. 32(4), 330-331.
181.Yu J.C., Ho W., Yu J., Yip H., Po K.W. and Zhao J., Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science and Technology, 2005. 39(4), 1175-1179.
182.Anpo M., Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure and Applied Chemistry, 2000. 72(9), 1787-1792.
183.Ghosh A.K. and Maruska H.P., Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes. Journal of the Electrochemical Society, 1977. 124(10), 1516-1122.
184.Yamashita H., Harada M., Misaka J., Takeuchi M., Ikeue K. and Anpo M., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1-3), 257-261.
185.Chen X. and Burda C., Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. Journal of Physical Chemistry B, 2004. 108(40), 15446-15449.
186.Prokes S.M., Gole J.L., Chen X., Burda C. and Carlos W.E., Defect-related optical behavior in surface-modified TiO2 nanostructures. Advanced Functional Materials, 2005. 15(1), 161-167.
187.Qiu X. and Burda C., Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chemical Physics, 2007. 339(1-3), 1-10.
188.Barborini E., Conti A.M., Kholmanov I., Piseri P., Podesta A., Milani P., Cepek C., Sakho O., Macovez R. and Sancrotti M., Nanostructured TiO2 films with 2 eV optical gaps. Advanced Materials, 2005. 17(15), 1842-1846.
189.Hahn R., Ghicov A., Salonen J., Lehto V.P. and Schmuki P., Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnology, 2007. 18(10).
190.Morikawa T., Asahi R., Ohwaki T., Aoki K. and Taga Y., Band-gap narrowing of titanium dioxide by nitrogen doping. Japanese Journal of Applied Physics, Part 2: Letters, 2001. 40(6 A), L561-L563.
191.Park J.H., Kim S. and Bard A.J., Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters, 2006. 6(1), 24-28.
192.Ghicov A., Macak J.M., Tsuchiya H., Kunze J., Haeublein V., Frey L. and Schmuki P., Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Letters, 2006. 6(5), 1080-1082.
193.Ghicov A., Macak J.M., Tsuchiya H., Kunze J., Haeublein V., Kleber S. and Schmuki P., TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chemical Physics Letters, 2006. 419(4-6), 426-429.
194.Kim D., Fujimoto S., Schmuki P. and Tsuchiya H., Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochemistry Communications, 2008. 10(6), 910-913.
195.Ghicov A., Schmidt B., Kunze J. and Schmuki P., Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chemical Physics Letters, 2007. 433(4-6), 323-326.
196.Vitiello R.P., Macak J.M., Ghicov A., Tsuchiya H., Dick L.F.P. and Schmuki P., N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochemistry Communications, 2006. 8(4), 544-548.
197.Beraneka R., Macak J.M., Gartner M., Meyer K. and Schmuki P., Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes. Electrochimica Acta, 2009. 54(9), 2640-2646.
198.Ghicov A., Yamamoto M. and Schmuki P., Lattice widening in niobium-doped TiO2 nanotubes: Efficient ion intercalation and swift electrochromic contrast. Angewandte Chemie - International Edition, 2008. 47(41), 7934-7937.
199.Varghese O.K., Paulose M., LaTempa T.J. and Grimes C.A., High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters, 2009. 9(2), 731-737.
200.MacAk J.M., Sirotna K. and Schmuki P., Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta, 2005. 50(18), 3679-3684.
201.Ghicov A., Albu S.P., Hahn R., Kim D., Stergiopoulos T., Kunze J., Schiller C.A., Falaras P. and Schmuki P., TiO2 nanotubes in dye-sensitized solar cells: Critical factors for the conversion efficiency. Chemistry - An Asian Journal, 2009. 4(4), 520-525.
202.Albu S.P. and Schmuki P., TiO2 nanotubes grown in different organic electrolytes: Two-size self-organization, single vs. double-walled tubes, and giant diameters. Physica Status Solidi - Rapid Research Letters, 2010. 4(8-9), 215-217.
203.Song Y.Y., Hildebrand H. and Schmuki P., Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO2. Surface Science, 2010. 604(3-4), 346-353.
204.Macak J.M., Gong B.G., Hueppe M. and Schmuki P., Filling of TiO2 nanotubes by self-doping and electrodeposition. Advanced Materials, 2007. 19(19), 3027-3031.
205.Shrestha N.K., Yang M., Nah Y.C., Paramasivam I. and Schmuki P., Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration. Electrochemistry Communications, 2010. 12(2), 254-257.
206.Roy P., Kim D., Paramasivam I. and Schmuki P., Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochemistry Communications, 2009. 11(5), 1001-1004.
207.Benoit A., Paramasivam I., Nah Y.C., Roy P. and Schmuki P., Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity. Electrochemistry Communications, 2009. 11(4), 728-732.
208.Paramasivam I., Macak J.M., Ghicov A. and Schmuki P., Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chemical Physics Letters, 2007. 445(4-6), 233-237.
209.Paramasivam I., Macak J.M. and Schmuki P., Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochemistry Communications, 2008. 10(1), 71-75.
210.Tsuchiya H., Tokuoka N., Honda S., Shinkai Y., Shimizu Y. and Fujimoto S., TiO2 nanotube layers with metallic nanoparticles. Journal of Physics: Conference Series, 2009. 165.
211.Paramasivam I., Avhale A., Inayat A., Bosmann A., Schmuki P. and Schwieger W., MFI-type (ZSM-5) zeolite-filled TiO2 nanotubes for enhanced photocatalytic activity. Nanotechnology, 2009. 20(22).
212.Kongkanand A., Tvrdy K., Takechi K., Kuno M. and Kamat P.V., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. Journal of the American Chemical Society, 2008. 130(12), 4007-4015.
213.Sun W.T., Yu A., Pan H.Y., Gao X.F., Chen Q. and Peng L.M., CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society, 2008. 130(4), 1124-1125.
214.Gerischer H. and Labke M., A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit. Journal of Electroanalytical Chemistry, 1986. 204(1-2), 225-227.
215.Plass R., Pelet S., Krueger J., Gratzel M. and Bach U., Quantum dot sensitization of organic-inorganic hybrid solar cells. Journal of Physical Chemistry B, 2002. 106(31), 7578-7580.
216.Balaur E., MacAk J.M., Taveira L. and Schmuki P., Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications, 2005. 7(10), 1066-1070.
217.Helmy R. and Fadeev A.Y., Self-assembled monolayers supported on TiO2: Comparison of C18H37SiX3 (X = H, Cl, OCH3), C18H37Si(CH3)2Cl, and C18H37PO(OH)2. Langmuir, 2002. 18(23), 8924-8928.
218.Silverman B.M., Wieghaus K.A. and Schwartz J., Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir, 2005. 21(1), 225-228.
219.Song Y.Y., Roy P., Paramasivam I. and Schmuki P., Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes. Angewandte Chemie - International Edition, 2010. 49(2), 351-354.
220.Song Y.Y., Schmidt-Stein F., Bauer S. and Schmuki P., Amphiphilic TiO2 nanotube arrays: An actively controllable drug delivery system. Journal of the American Chemical Society, 2009. 131(12), 4230-4232.
221.Lu W., Wang G., Jin Y., Yao X., Hu J. and Li J., Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode. Applied Physics Letters, 2006. 89(26).
222.Song Y.Y. and Schmuki P., Modulated TiO2 nanotube stacks and their use in interference sensors. Electrochemistry Communications, 2010. 12(4), 579-582.
223.Liu X.Y., Paul K.C. and Ding C.X., Mater. Sci. Eng. R, 2004. 47, 49.
224.Morra M., Biochemical modification of titanium surfaces: Peptides and ECM proteins. European Cells and Materials, 2006. 12, 1-15.
225.Nanci A., Wuest J.D., Peru L., Brunet P., Sharma V., Zalzal S. and McKee M.D., Chemical modification of titanium surfaces for covalent attachment of biological molecules. Journal of Biomedical Materials Research, 1998. 40(2), 324-335.
226.Ratner B.D., Biomaterials Science: An Interdisciplinary Endeavour. Academic Press, 1996, 37-130.
227.Roy P., Dey T. and Schmuki P., Scanning electron microscopy observation of nanoscopic wetting of TiO2 nanotubes and ODS modified nanotubes using ionic liquids. Electrochemical and Solid-State Letters, 2010. 13(7), E11-E13.
228.Balaur E., Macak J.M., Tsuchiya H. and Schmuki P., Wetting behaviour of layers of TiO2 nanotubes with different diameters. Journal of Materials Chemistry, 2005. 15(42), 4488-4491.
229.White J.M., Szanyi J. and Henderson M.A., The photon-driven hydrophilicity of titania: A model study using TiO2(110) and adsorbed trimethyl acetate. Journal of Physical Chemistry B, 2003. 107(34), 9029-9033.
230.Schmidt-Stein F., Hahn R., Gnichwitz J.F., Song Y.Y., Shrestha N.K., Hirsch A. and Schmuki P., X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release. Electrochemistry Communications, 2009. 11(11), 2077-2080.
231.Cassie A.B.D. and Baxter S., Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40, 546-551.
232.Kim D., Macak J.M., Schimidt-Stein F. and Schmuki P., Capillary effects, wetting behavior and photo-induced tube filling of TiO2 nanotube layers. Nanotechnology, 2008. 19(30).
233.Schmidt-Stein F., Gnichwitz J.F., Salonen J., Hahn R., Hirsch A. and Schmuki P., Electrochemical wettability control on conductive TiO2 nanotube surfaces modified with a ferrocene redox system. Electrochemistry Communications, 2009. 11(10), 2000-2003.
234.Euphrasie S., Daviero-Minaud S. and Pernod P., PZT films deposited by a hydrothermal method and characterizations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003. 104(3), 180-184.
235.Hernandez B.A., Chang K.S., Fisher E.R. and Dorhout P.K., Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chemistry of Materials, 2002. 14(2), 480-482.
236.Mao Y., Banerjee S. and Wong S.S., Hydrothermal synthesis of perovskite nanotubes. Chemical Communications, 2003. 9(3), 408-409.
237.Singh G.K., Golovin A.A. and Aranson I.S., Formation of self-organized nanoscale porous structures in anodic aluminum oxide. Physical Review B - Condensed Matter and Materials Physics, 2006. 73(20).
238.Stanton L.G. and Golovin A.A., Effect of ion migration on the self-assembly of porous nanostructures in anodic oxides. Physical Review B - Condensed Matter and Materials Physics, 2009. 79(3).
239.Urban J.J., Yun W.S., Gu Q. and Park H., Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. Journal of the American Chemical Society, 2002. 124(7), 1186-1187.
240.Macak J.M., Zollfrank C., Rodriguez B.J., Tsuchiya H., Alexe M., Greil P. and Schmuki P., Ordered ferroelectric lead titanate nanocellular structure by conversion of anodic TiO2 nanotubes. Advanced Materials, 2009. 21(30), 3121-3125.
241.Padture N.P. and Wei X., Hydrothermal synthesis of thin films of barium titanate ceramic nano-tubes at 200°C. Journal of the American Ceramic Society, 2003. 86(12), 2215-2217.
242.Wei X., Vasiliev A.L. and Padture N.P., Nanotubes patterned thin films of barium-strontium titanate. Journal of Materials Research, 2005. 20(8), 2140-2147.
243.Yang Y., Wang X., Zhong C., Sun C. and Li L., Ferroelectric PbTiO3 nanotube arrays synthesized by hydrothermal method. Applied Physics Letters, 2008. 92(12).
244.Xin Y., Jiang J., Huo K., Hu T. and Chu P.K., Bioactive SrTiO3 nanotube arrays: Strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano, 2009. 3(10), 3228-3234.
245.Yasuda K. and Schmuki P., Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 2007. 52(12), 4053-4061.
246.Yasuda K. and Schmuki P., Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochemistry Communications, 2007. 9(4), 615-619.
247.Arico A.S., Bruce P., Scrosati B., Tarascon J.M. and Van Schalkwijk W., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005. 4(5), 366-377.
248.Fujishima A., Zhang X. and Tryk D.A., TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12), 515-582.
249.Lai Y., Sun L., Chen Y., Zhuang H., Lin C. and Chin J.W., Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. Journal of the Electrochemical Society, 2006. 153(7), D123-D127.
250.Xie Y., Photoelectrochemical application of nanotubular titania photoanode. Electrochimica Acta, 2006. 51(17), 3399-3406.
251.Albu S.P., Ghicov A., Macak J.M., Hahn R. and Schmuki P., Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Letters, 2007. 7(5), 1286-1289.
252.Macak J.M., Zlamal M., Krysa J. and Schmuki P., Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small, 2007. 3(2), 300-304.
253.Zlamal M., Macak J.M., Schmuki P. and KrA½sa J., Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochemistry Communications, 2007. 9(12), 2822-2826.
254.Agarwal P., Paramasivam I., Shrestha N.K. and Schmuki P., MoO3 in self-organized TiO2 nanotubes for enhanced photocatalytic activity. Chemistry - An Asian Journal, 2010. 5(1), 66-69.
255.Paramasivam I., Nah Y.C., Das C., Shrestha N.K. and Schmuki P., WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chemistry - A European Journal, 2010. 16(30), 8993-8997.
256.Lin C.J., Lu Y.T., Hsieh C.H. and Chien S.H., Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting. Applied Physics Letters, 2009. 94(11).
257.Mohapatra S.K., Misra M., Mahajan V.K. and Raja K.S., Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. Journal of Physical Chemistry C, 2007. 111(24), 8677-8685.
258.Mohapatra S.K., Misra M., Mahajan V.K. and Raja K.S., A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. Journal of Catalysis, 2007. 246(2), 362-369.
259.Banerjee S., Mohapatra S.K. and Misra M., Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: A novel catalyst for photoelectrochemical hydrogen generation from water. Chemical Communications, 2009(46), 7137-7139.
260.Albu S.P., Ghicov A., Berger S., Jha H. and Schmuki P., TiO2 nanotube layers: Flexible and electrically active flow-through membranes. Electrochemistry Communications, 2010. 12(10), 1352-1355.
261.Mishra A., Fischer M.K.R. and Bauerle P., Metal-Free organic dyes for dye-Sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie - International Edition, 2009. 48(14), 2474-2499.
262.Aprile C., Corma A. and Garcia H., Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: From subnanometric to submillimetric length scale. Physical Chemistry Chemical Physics, 2008. 10(6), 769-783.
263.Paramasivam I., Avhale A., Inayat A., Bosmann A., Schmuki P. and Schwieger W., MFI-type (ZSM-5) zeolite-filled TiO2 nanotubes for enhanced photocatalytic activity. Nanotechnology, 2009. 20(22), 225607.
264.Kalbacova M., Macak J.M., Schmidt-Stein F., Mierke C.T. and Schmuki P., TiO2 nanotubes: Photocatalyst for cancer cell killing. Physica Status Solidi - Rapid Research Letters, 2008. 2(4), 194-196.
265.Roy P., Lynch R. and Schmuki P., Electron beam induced in-vacuo Ag deposition on TiO2 from ionic liquids. Electrochemistry Communications, 2009. 11(8), 1567-1570.
266.Quan X., Yang S., Ruan X. and Zhao H., Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science and Technology, 2005. 39(10), 3770-3775.
267.Pan L., Ji M., Wang M., Zhang X. and Lu B., Preparation of titanium dioxide nanotube and its catalytic activity for ozonation. Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2007. 58(11), 2787-2792.
268.Lubberhuizen W.H., Vanmaekelbergh D. and Van Faassen E., Recombination of photogenerated charge carriers in nanoporous gallium phosphide. Journal of Porous Materials, 2000. 7(1), 147-152.
269.Mor G.K., Shankar K., Paulose M., Varghese O.K. and Grimes C.A., Enhanced photocleavage of water using titania nanotube arrays. Nano Letters, 2005. 5(1), 191-195.
270.Varghese O.K., Mor G.K., Grimes C.A., Paulose M. and Mukherjee N., A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. Journal of Nanoscience and Nanotechnology, 2004. 4(7), 733-737.
271.Wu M.T., Yao X., Yuan Z.H., Sun H.T., Wu W.C., Chen Q.H. and Xu G.Y., Effect of noble metal catalyst on titania exhaust gas oxygen sensor. Sensors and Actuators, B: Chemical, 1993. B14(1 -3 pt 2), 491.
272.Zheng Q., Zhou B., Bai F., Li L., Jin Z., Zhang J., Li J., Liu Y., Cai W. and Zhu X., Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Advanced Materials, 2008. 20(5), 1044-1049.
273.Popat K.C., Eltgroth M., LaTempa T.J., Grimes C.A. and Desai T.A., Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials, 2007. 28(32), 4880-4888.
274.Matsunaga T., Tomoda R., Nakajima T. and Wake H., Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 1985. 29(1-2), 211-214.
275.Ling Y., Qi J.J., Zou X.F., Zhao X.M., Bai X.D. and Feng Q.L., Synthesis and evaluation of antibacterial titanate nanotubes. Key Engineering Materials, 2005. 280-283(I), 707-712.
276.Hosford M.E., Muller J.G. and Burrows C.J., Spermine participates in oxidative damage of guanosine and 8-oxoguanosine leading to deoxyribosylurea formation. Journal of the American Chemical Society, 2004. 126(31), 9540-9541.
277.Juzenas P., Chen W., Sun Y.P., Coelho M.A.N., Generalov R., Generalova N. and Christensen I.L., Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 2008. 60(15), 1600-1614.
278.Wang S., Gao R., Zhou F. and Selke M., Nanomaterials and singlet oxygen photosensitizers: Potential applications in photodynamic therapy. Journal of Materials Chemistry, 2004. 14(4), 487-493.
279.Arbogast J.W., Darmanyan A.P., Foote C.S., Rubin Y., Diederich F.N., Alvarez M.M., Anz S.J. and Whetten R.L., Photophysical properties of C60. Journal of Physical Chemistry, 1991. 95(1), 11-12.
280.Foote C.S., Photophysical and photochemical properties of fullerenes. Top. Curr. Chem., 1994. 169, 347-363.
281.Fraelich M.R. and Weisman R.B., Triplet states of C60 and C70 in solution: Long intrinsic lifetimes and energy pooling. Journal of Physical Chemistry, 1993. 97(43), 11145-11147.
282.Kratschmer W., Fostiropoulos K. and Huffman D.R., The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chemical Physics Letters, 1990. 170(2-3), 167-170.
283.Von Wilmowsky C., Bauer S., Lutz R., Meisel M., Neukam F.W., Toyoshima T., Schmuki P., Nkenke E. and Schlegel K.A., In Vivo Evaluation of Anodic TiO2 Nanotubes; An Experimental Study in the Pig. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009. 89(1), 165-171.
284.Yao C., Balasundaram G. and Webster T., Use of anodized titanium in drug delivery applications. Mater Res Soc Symp Proc Vol, 2007. 951, 28-29.
285.Garca-Ripoll A., Amat A.M., Arques A., Vicente R., Ballesteros Martan M.M., Parez J.A.S., Oller I. and Malato S., Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent. Journal of Hazardous Materials, 2009. 162(2-3), 1223-1227.
286.Jang J.M., Park S.J., Choi G.S., Kwon T.Y. and Kim K.H., Chemical state and ultra-fine structure analysis of biocompatible TiO2 nanotube-type oxide film formed on titanium substrate. Metals and Materials International, 2008. 14(4), 457-463.
287.Sasaki K., Asanuma K., Johkura K., Kasuga T., Okouchi Y., Ogiwara N., Kubota S., Teng R., Cui L. and Zhao X., Ultrastructural analysis of TiO2 nanotubes with photodecomposition of water into O2 and H2 implanted in the nude mouse. Annals of Anatomy, 2006. 188(2), 137-142.
288.Sul Y.T., Johansson C.B., Jeong Y. and Albrektsson T., The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering and Physics, 2001. 23(5), 329-346.
289.Zhang Y.M., Bataillon-Linez P., Huang P., Zhao Y.M., Han Y., Traisnel M., Xu K.W. and Hildebrand H.F., Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. Journal of Biomedical Materials Research - Part A, 2004. 68(2), 383-391.
290.Schmuki P. and Erickson L.E., Selective high-resolution electrodeposition on semiconductor defect patterns. Physical Review Letters, 2000. 85(14), 2985-2988.
291.Schmuki P., Erickson L.E. and Lockwood D.J., Light emitting micropatterns of porous Si created at surface defects. Physical Review Letters, 1998. 80(18), 4060-4063.
292.Gratzel M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2), 145-153.
293.Jennings J.R., Ghicov A., Peter L.M., Schmuki P. and Walker A.B., Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. Journal of the American Chemical Society, 2008. 130(40), 13364-13372.
294.Gratzel M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005. 44(20), 6841-6851.
295.Macak J.M., Tsuchiya H., Ghicov A. and Schmuki P., Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications, 2005. 7(11), 1133-1137.
296.Roy P., Albu S.P. and Schmuki P., TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. Electrochemistry Communications, 2010. 12(7), 949-951.
297.Kim D., Ghicov A., Albu S.P. and Schmuki P., Bamboo-type TiO2 nanotubes: Improved conversion efficiency in dye-sensitized solar cells. Journal of the American Chemical Society, 2008. 130(49), 16454-16455.
298.Kim D., Ghicov A. and Schmuki P., TiO2 Nanotube arrays: Elimination of disordered top layers ("nanograss") for improved photoconversion efficiency in dye-sensitized solar cells. Electrochemistry Communications, 2008. 10(12), 1835-1838.
299.Mor G.K., Shankar K., Paulose M., Varghese O.K. and Grimes C.A., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006. 6(2), 215-218.
300.Park J.H., Lee T.W. and Kang M.G., Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: Use in dye-sensitized solar cells. Chemical Communications, 2008(25), 2867-2869.
301.Nazeeruddin M.K., Kay A., Rodicio I., Humphry-Baker R., Maller E., Liska P., Vlachopoulos N. and Gratzel M., Conversion of light to electricity by cis-X2bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 1993. 115(14), 6382-6390.
302.Zhu K., Vinzant T.B., Neale N.R. and Frank A.J., Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Letters, 2007. 7(12), 3739-3746.
303.Hahn R., Stergiopoulus T., Macak J.M., Tsoukleris D., Kontos A.G., Albu S.P., Kim D., Ghicov A., Kunze J., Falaras P. and Schmuki P., Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization - A comparison. Physica Status Solidi - Rapid Research Letetrs, 2007. 1(4), 135-137.
304.Ishibashi K.I., Yamaguchi R.T., Kimura Y. and Niwano M., Fabrication of titanium oxide nanotubes by rapid and homogeneous anodization in perchloric acid/ethanol mixture. Journal of the Electrochemical Society, 2008. 155(1), K10-K14.
305.Kim D., Lee K., Roy P., Birajdar B.I., Spiecker E. and Schmuki P., Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells. Angewandte Chemie - International Edition, 2009. 48(49), 9326-9329.
306.Kim D., Roy P., Lee K. and Schmuki P., Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment. Electrochemistry Communications, 2010. 12(4), 574-578.
307.Lee K., Kim D., Roy P., Paramasivam I., Birajdar B.I., Spiecker E. and Schmuki P., Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis. Journal of the American Chemical Society, 2010. 132(5), 1478-1479.
308.Shrestha N.K., Macak J.M., Schmidt-Stein F., Hahn R., Mierke C.T., Fabry B. and Schmuki P., Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angewandte Chemie - International Edition, 2009. 48(5), 969-972.
309.Peng L., Mendelsohn A.D., LaTempa T.J., Yoriya S., Grimes C.A. and Desai T.A., Long-Term small molecule and protein elution from TiO2 nanotubes. Nano Letters, 2009. 9(5), 1932-1936.
310.Popat K.C., Eltgroth M., LaTempa T.J., Grimes C.A. and Desai T.A., Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small, 2007. 3(11), 1878-1881.
311.Kim I.D., Rothschild A., Lee B.H., Kim D.Y., Jo S.M. and Tuller H.L., Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Letters, 2006. 6(9), 2009-2013.
312.Seo M.H., Yuasa M., Kida T., Huh J.S., Shimanoe K. and Yamazoe N., Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sensors and Actuators, B: Chemical, 2009. 137(2), 513-520.
313.Seo M.H., Yuasa M., Kida T., Huh J.S., Yamazoe N. and Shimanoe K., Detection of organic gases using TiO2 nanotube-based gas sensors. Procedia Chemistry, 2009. 1(1), 192-195.
314.Varghese O.K., Gong D., Paulose M., Ong K.G. and Grimes C.A., Hydrogen sensing using titania nanotubes. Sensors and Actuators, B: Chemical, 2003. 93(1-3), 338-344.
315.Song Y.Y., Schmidt-Stein F., Berger S. and Schmuki P., TiO2 nano test tubes as a self-cleaning platform for high-sensitivity immunoassays. Small, 2010. 6(11), 1180-1184.
316.Xiao P., Garcia B.B., Guo Q., Liu D. and Cao G., TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochemistry Communications, 2007. 9(9), 2441-2447.
317.Tsuchiya H., Akaki T., Nakata J., Terada D., Tsuji N., Koizumi Y., Minamino Y., Schmuki P. and Fujimoto S., Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta, 2009. 54(22), 5155-5162.
318.Paramasivam I., Macak J.M., Selvam T. and Schmuki P., Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). Electrochimica Acta, 2008. 54(2), 643-648.
319.Chun K.Y., Park B.W., Sung Y.M., Kwak D.J., Hyun Y.T. and Park M.W., Fabrication of dye-sensitized solar cells using TiO2-nanotube arrays on Ti-grid substrates. Thin Solid Films, 2009. 517(14), 4196-4198.
320.El-Sayed H., Singh S., Greiner M.T. and Kruse P., Formation of highly ordered arrays of dimples on tantalum at the nanoscale. Nano Letters, 2006. 6(12), 2995-2999.
321.Singh S., Barden W.R.T. and Kruse P., Nanopatterning of transition metal surfaces via electrochemical dimple array formation. ACS Nano, 2008. 2(12), 2453-2464.
322.Vignal V., Roux J.C., Flandrois S. and Fevrier A., Nanoscopic studies of stainless steel electropolishing. Corrosion Science, 2000. 42(6), 1041-1053.
323.Roy P., Dey T., Lee K., Kim D., Fabry B. and Schmuki P., Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (Declogging) ability. Journal of the American Chemical Society, 2010. 132(23), 7893-7895.
324.Cheng Y.W., Chan R.C.Y. and Wong P.K., Disinfection of Legionella pneumophila by photocatalytic oxidation. Water Research, 2007. 41(4), 842-852.
325.Ksibi M., Rossignol S., Tatibouat J.M. and Trapalis C., Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light. Materials Letters, 2008. 62(26), 4204-4206.
326.Li Y., Lu G. and Li S., Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 152(1-3), 219-228.
327.Liu G., Wang L., Yang H.G., Cheng H.M. and Lu G.Q., Titania-based photocatalysts - Crystal growth, doping and heterostructuring. Journal of Materials Chemistry, 2010. 20(5), 831-843.
328.Xiang Q., Yu J., Cheng B. and Ong H.C., Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. Chemistry - An Asian Journal, 2010. 5(6), 1466-1474.
329.Yu J.C., Yu J., Ho W., Jiang Z. and Zhang L., Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002. 14(9), 3808-3816.
330.Gong X.Q. and Selloni A., Reactivity of anatase TiO2 nanoparticles: The role of the minority (001) surface. Journal of Physical Chemistry B, 2005. 109(42), 19560-19562.
331.Selloni A., Crystal growth: Anatase shows its reactive side. Nature Materials, 2008. 7(8), 613-615.
332.Han X., Kuang Q., Jin M., Xie Z. and Zheng L., Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society, 2009. 131(9), 3152-3153.
333.Liu M., Piao L., Lu W., Ju S., Zhao L., Zhou C., Li H. and Wang W., Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis. Nanoscale, 2010. 2(7), 1115-1117.
334.Yang H.G., Sun C.H., Qiao S.Z., Zou J., Liu G., Smith S.C., Cheng H.M. and Lu G.Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008. 453(7195), 638-641.
335.Yang H.G., Liu G., Qiao S.Z., Sun C.H., Jin Y.G., Smith S.C., Zou J., Cheng H.M. and Lu G.Q., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊