跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝兆琳
研究生(外文):Chao-Lin Hsieh
論文名稱:W/O/W乳化液膜系統中薄膜過濾W/O乳液之濾速改善研究
論文名稱(外文):Flux Recovery in Membrane Filtration of W/O Emulsions in W/O/W Emulsion Liquid Membranes
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-ShinJuang
口試委員:黃國楨黃駿
口試委員(外文):Kuo-JenHwangChunHuang
口試日期:2012-1-12
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:144
中文關鍵詞:乳化式液膜實驗設計超過濾電漿表面改質阻力串聯模式濾速改善
外文關鍵詞:Plasma modificationResistance-in-series modelFlux improvementEmulsion liquid membraneDesign of experimentsUltrafiltration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文選用W/O/W乳化液膜進行金屬銅、鋅離子萃取分離之研究,並使用膜過濾分離W/O乳液回收,接續進行過濾膜的表面改質與改善濾速研究。由於萃取分離過程中以乳化液膜的穩定度是關鍵程序,本研究首先以統計學裡的實驗設計法進行初步探討,並以分離係數作為反應值,以決定製作乳液的操作條件( D2EHPA 0.1M、Span 80 3 vol-%、外水相pH 3.0及乳水體積比7),確保乳化液膜在穩定狀態下進行萃取過濾實驗。
後續過濾實驗,研究選用PVDF薄膜進行恆壓過濾,因其為疏水性薄膜,結垢及吸附現象顯著,故此,本研究使用大氣純氬氣電漿(150 W、150 s、10 mm及10 slm)及添加甲烷氬氣電漿(200 sccm、150 W、150 s、10 mm及10 slm)進行薄膜表面改質,將其薄膜改質為親水性膜材,並以SEM及CLSM觀察表面型態的變化,實驗發現透過電漿改質後其薄膜孔徑改變甚巨,且並將以阻力串聯模式分析其濾速行為,探討薄膜改質前後之各種阻力變化。
因前述之電漿改質會改變薄膜孔徑,後以遙距式氬氣電漿(150 W、150 s、15 mm及10 slm)及遙距式添加甲烷氬氣電漿(200 sccm、150 W、150 s、15 mm及10 slm)進行表面改質,並加以分析。由分析結果得知,本研究之總阻力以吸附阻力為主,隨透膜壓力的增加濾餅阻力也逐漸上升;經電漿改質過濾薄膜後之薄膜本身阻力及吸附阻力皆有明顯下降。
This research used W/O/W emulsion liquid membrane to extract and separate zinc and copper ions, and recover W/O emulsion through filtration. To improve its limiting flux characteristics, microporous poly(vinylidene fluoride) membrane (PVDF) was surface-modified by cyclonic atmospheric-pressure plasma. Owing to the importance of the stability of the emulsion liquid membrane in extraction and separation process, this study determines the D.O.E (design of experiments) to discuss the experimental conditions (D2EHPA 0.1M、Span 80 3vol-%、external phase pH 3.0 and treatment ratio 7) of the emulsion to ensure the emulsion liquid membrane was stable while carrying out filtration and extraction experiments.
The study used PVDF ultrafiltration membrane in Dead-end system due to its feature as a hydrophobic material which could result significantly in the membrane fouling and adsorption phenomenon. Thus, it was modified the membrane surface by atmospheric argon plasma treatment (150 W、150 s、10 mm、10 slm) and argon mixed methane plasma treatment(200 sccm、150 W、150 s、15 mm、10 slm). Next, the resistance-in-series model was used to analyze the variation of the modified and un-modified membrane.
Because the plasma treatment causes the enlarged membrane pore size, so we modified the membrane surface by remoted plasma treatment to avoid the pore size change. In the analysis, the membrane resistance and adsorption resistance decreased after plasma surface modification. On the other hand, in the resistance-in-series model, the Cake resistances were increased depended on the transmembrane pressure.
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 乳化式液膜之簡介 3
1.3 界面活性劑之簡介 6
1.4 載體D2EHPA之簡介 9
1.5 實驗設計 12
1.6 表面改質 13
1.7 文獻回顧 15
1.8 研究動機與目的 18
第二章 實驗部分 21
2.1 實驗藥品儀器 21
2.1.1實驗藥品 21
2.1.2 實驗儀器 22
2.2 實驗裝置與步驟 25
2.2.1 實驗裝置 25
2.2.2 製備W/O/W乳化型液膜 27
2.2.3 實驗設計法決定W/O/W乳化型液膜 27
2.2.4 超過濾法處理W/O液膜 28
2.2.5 電漿表面改質 28
2.2.6 串聯阻力分析 30
第三章 結果與討論 31
3.1 各種變因對乳化液膜萃取的影響 31
3.1.1 製乳攪拌轉速與時間 31
3.1.2 萃取攪拌轉速 31
3.1.3 內水相濃度 32
3.1.4 內水相對油相體積比(ψW)的影響 32
3.1.5 萃取時間 33
3.1.6 界面活性劑濃度 34
3.1.7萃取劑濃度 35
3.1.8 外水相之pH值 36
3.1.9 乳水體積比(Vwe / Vw/o) 37
3.2 統計實驗設計 37
3.2.1 部分因子設計 37
3.2.2 反應曲面 48
3.3 乳液粒徑之探討 50
3.4純氬氣電漿表面改質超過濾薄膜 51
3.4.1改變電漿處理時間 51
3.4.2改變電漿功率 56
3.4.3改變氬氣流率 62
3.4.4改變噴頭至基材距離 66
3.4.5 XPS分析 71
3.4.6 孔隙度分析 73
3.4.7 老化實驗 76
3.5氬氣電漿添加甲烷氣體表面改質超過濾薄膜 77
3.5.1改變甲烷流率 77
3.5.2改變電漿處理時間 82
3.5.3改變電漿功率 86
3.5.4改變氬氣流率 90
3.5.5改變噴頭至基材距離 95
3.5.6 XPS分析 99
3.5.7 孔隙度分析 101
3.5.8老化實驗 103
3.6 遙距式電漿表面改質超過濾薄膜 104
3.6.1 遙距式純氬氣電漿表面改質超過濾薄膜 104
3.6.2 遙距式氬氣電漿添加甲烷氣體表面改質超過濾薄膜 107
3.7 恆壓式攪拌系統以超過濾薄膜分離乳化式液膜 112
3.7.1 恆壓過濾PVDF薄膜 113
3.7.2 純氬氣電漿改質PVDF薄膜 116
3.7.3 添加甲烷之氬氣電漿改質PVDF薄膜 117
3.7.4 遙距式純氬氣電漿改質PVDF薄膜 118
3.7.5 遙距式添加甲烷之氬氣電漿改質PVDF薄膜 119
第四章 結垢理論分析 121
第五章 結論 136
參考文獻 137
自述 144
Andrzej, K. t., Predicting permeate flux in ultrafiltration on the basis of surface renewal concept, Journal of Membrane Science, 68 (1992) 107-118.
Bart, H. J. W., T.; Barr, R., Copper Permeation from Natural Leach Solutions, Ellis Horwood Ltd, 1987, 347-354.
Bemberis, I., Ultrafiltration as a competitive unit process, 1986, Number of
Bouchard, C. R.; Carreau, P. J.; Matsuura, T.; Sourirajan, S., Modeling of ultrafiltration: Predictions of concentration polarization effects, Journal of Membrane Science, 97 (1994) 215-229.
Cahn, R. P.; Li, N. N., Separation of phenol from waste water by the liquid membrane technique, SEPARAT.SCI., 9 (1974) 505-519.
Carrere, H.; Blaszkow, F.; Balmann, H. R. d., Modelling the clarification of lactic acid fermentation broths by cross-flow microfiltration, Journal of Membrane Science, 186 (2001) 219-230.
Carrere, H.; Blaszkowa, F.; Roux de Balmann, H., Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes, Desalination, 145 (2002) 201-206.
Cheryan, M., Ultrafiltration and microfiltration handbook, Technomic Pub. Co., 1998.
Chiha, M.; Hamdaoui, O.; Ahmedchekkat, F.; Petrier, C., Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process, Ultrasonics Sonochemistry, 17 (2010) 318-325.
Dornier, M.; Petermann, R.; Decloux, M., Influence of start-up procedure on crossflow microfiltration of raw cane sugar, Journal of Food Engineering, 24 (1995) 213-224.
Flemming F, S., Characteristics and performance of new types of ultrafiltration membranes with chemically modified surfaces, Desalination, 70 (1988) 207-224.
Flett, D. S., Solvent extraction in scrap and waste processing, Journal of Chemical Technology and Biotechnology, 29 (1979) 258-272.
Fouad, E. A., Zinc and copper separation through an emulsion liquid membrane containing di-(2-ethylhexyl) phosphoric acid as a carrier, Chemical Engineering and Technology, 31 (2008) 370-376.
Golander, C.-G.; Kiss, E., Protein adsorption on functionalized and ESCA-characterized polymer films studied by ellipsometry, Journal of Colloid and Interface Science, 121 (1988) 240-253.
Gopal, R.; Zuwei, M.; Kaur, S.; Ramakrishna, S. (2007). Surface Modification and Application of Functionalized Polymer Nanofibers Molecular Building Blocks for Nanotechnology. Mansoori, G.; George, T.; Assoufid, L.; Zhang, G., Springer Berlin / Heidelberg. 109: 72-91.
Greg, F., A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions, Journal of Membrane Science, 274 (2006) 38-46.
Hesford, E.; McKay, H. A. C., The extraction of mineral acids by tri-n-butyl phosphate (TBP), Journal of Inorganic and Nuclear Chemistry, 13 (1960) 156-164.
Hudson, M. J., An introduction to some aspects of solvent extraction chemistry in hydrometallurgy, Hydrometallurgy, 9 (1982) 149-168.
Hughes, M. A., The recovery of metals from secondary sources: solvent extraction routes, Chemistry and Industry (London), No. 24 (1975) 1042-1046.
Hvid, K. B.; Nielsen, P. S.; Stengaard, F. F., Preparation and characterization of a new ultrafiltration membrane, Journal of Membrane Science, 53 (1990) 189-202.
Hwang, K.-J.; Hsueh, C.-L., Dynamic analysis of cake properties in microfiltration of soft colloids, Journal of Membrane Science, 214 (2003) 259-273.
Hwang, K. J.; Chang, Y. C., The Use of Cross‐Flow Microfiltration in Purification of Liposomes, Separation Science and Technology, 39 (2004) 2557-2576.
Kato, K.; Uchida, E.; Kang, E.-T.; Uyama, Y.; Ikada, Y., Polymer surface with graft chains, Progress in Polymer Science, 28 (2003) 209-259.
Kaur, S.; Ma, Z.; Gopal, R.; Singh, G.; Ramakrishna, S.; Matsuura, T., Plasma-Induced Graft Copolymerization of Poly(methacrylic acid) on Electrospun Poly(vinylidene fluoride) Nanofiber Membrane, Langmuir, 23 (2007) 13085-13092.
Kinugasa, T.; Watanabe, K.; Takeuchi, H., Effect of organic solvents on stability of liquid surfactant membranes, Journal of Chemical Engineering of Japan, 22 (1989) 593-597.
Koltuniewicz, A. B.; Field, R. W.; Arnot, T. C., Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: Experimental study and analysis of flux decline, Journal of Membrane Science, 102 (1995) 193-207.
Lee, Y.; Clark, M. M., Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions, Journal of Membrane Science, 149 (1998) 181-202.
Lundstrom, I., Surface Physics and Biological Phenomena, Physica Scripta, 1983 (1983) 5.
Marr, R.; Kopp, A., LIQUID MEMBRANE TECHNOLOGY - A SURVEY OF PHENOMENA, MECHANISMS, AND MODELS, International chemical engineering, 22 (1982) 44-60.
Masciola, D. A.; Viadero Jr, R. C.; Reed, B. E., Tubular ultrafiltration flux prediction for oil-in-water emulsions: analysis of series resistances, Journal of Membrane Science, 184 (2001) 197-208.
Mathias, U., Advanced functional polymer membranes, Polymer, 47 (2006) 2217-2262.
Matthiasson, E.; Sivik, B., Concentration polarization and fouling, Desalination, 35 (1980) 59-103.
Nabe, A.; Staude, E.; Belfort, G., Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions, Journal of Membrane Science, 133 (1997) 57-72.
Nady, N.; Franssen, M. C. R.; Zuilhof, H.; Eldin, M. S. M.; Boom, R.; Schroen, K., Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification, Desalination, 275 (2011) 1-9.
Nystrom, M., Ultrafiltration of O/W emulsions stabilized by limiting amounts of tall oil, Colloids and Surfaces, 57 (1991) 99-114.
Piron, E.; Rene, F.; Latrille, E., A cross-flow microfiltration model based on integration of the mass transport equation, Journal of Membrane Science, 108 (1995) 57-70.
Raghuraman, B.; Tirmizi, N.; Wiencek, J., Emulsion liquid membranes for wastewater treatment: Equilibrium models for some typical metal-extractant systems, Environmental Science and Technology, 28 (1994) 1090-1098.
Reinhardt, H., Solvent extraction for recovery of metal waste, Chemistry and Industry (London), No.5 (1975) 210-213.
Ruppert, M.; Draxler, J.; Marr, R., Liquid-membrane-permeation and its experiences in pilot-plant and industrial scale, Separation Science and Technology, 23 (1988) 1659-1666.
Rushton, A.; Ward, A. S.; Holdich, R. G. (2008). , Solid-Liquid Filtration and Separation Technology, Wiley-VCH Verlag GmbH: I-XIII.
Sorensen, B. L.; Sorensen, P. B., Applying cake filtration theory on membrane filtration data, Water Research, 31 (1997) 665-670.
Schroen, C. G. P. H.; Stuart, M. A. C.; van der Voort Maarschalk, K.; van der Padt, A.; van't Riet, K., Influence of Preadsorbed Block Copolymers on Protein Adsorption: Surface Properties, Layer Thickness, and Surface Coverage, Langmuir, 11 (1995) 3068-3074.
Sekine, T. H., T., Solvent extraction chemistry: Fundamentals and applications M. Dekker 1977, Number of
Shimizu, Y.; Shimodera, K.-I.; Watanabe, A., Cross-flow microfiltration of bacterial cells, Journal of Fermentation and Bioengineering, 76 (1993) 493-500.
Strzelbicki, J.; Charewicz, W., Separation of copper by liquid surfactant membranes, Journal of Inorganic and Nuclear Chemistry, 40 (1978) 1415-1421.
Svarovsky, L. (2001). 9 - Filtration fundamentals. Solid-Liquid Separation (Fourth Edition). Ladislav, S.; Dipl, I.; PhD; Ceng; Fichem Ea2 - Ladislav Svarovsky, D.I.P.C.F.E. Oxford, Butterworth-Heinemann: 302-334.
Tavlarides, L. L.; Bae, J. H.; Lee, C. K., SOLVENT EXTRACTION, MEMBRANES, AND ION EXCHANGE IN HYDROMETALLURGICAL DILUTE METALS SEPARATION, Separation Science and Technology, 22 (1985) 581-617.
Tsujii, Y.; Ohno, K.; Yamamoto, S.; Goto, A.; Fukuda, T. (2006). Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization: 1-45.
Ulbricht, M.; Belfort, G., Surface modification of ultrafiltration membranes by low temperature plasma. I. Treatment of polyacrylonitrile, Journal of Applied Polymer Science, 56 (1995) 325-343.
Wavhal, D. S.; Fisher, E. R., Membrane Surface Modification by Plasma-Induced Polymerization of Acrylamide for Improved Surface Properties and Reduced Protein Fouling, Langmuir, 19 (2002) 79-85.
Yeh, H. M.; Tsai, J. W., Membrane ultrafiltration in multipass hollow-fiber modules, Journal of Membrane Science, 142 (1998) 61-73.
Yeh, H. M.; Wu, H. H., Membrane ultrafiltration in combined hollow-fiber module systems, Journal of Membrane Science, 124 (1997) 93-105.
Yeh, H. M.; Wu, H. P.; Dong, J. F., Effects of design and operating parameters on the declination of permeate flux for membrane ultrafiltration along hollow-fiber modules, Journal of Membrane Science, 213 (2003) 33-44.
Yu, H.-Y.; He, X.-C.; Liu, L.-Q.; Gu, J.-S.; Wei, X.-W., Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment, Water Research, 41 (2007) 4703-4709.
于仰聖, 以逆滲透膜法處理螯合重金屬廢水之研究, 碩士論文, 國立台灣科技大學, 台灣 (1992).
朱華勳, 螯合劑存在對液態離子交換媒之影響, 碩士論文, 元智大學, 桃園 (1999).
江建德, 乳化型液膜程序中W/O乳液之超過濾分離, 碩士論文, 元智大學, 桃園 (1993).
宋斯偉, 萃取液相中重金屬之研究, 碩士論文, 化學工程系, (1999).
李南瑤, 應用乳化液膜技術分離及濃縮苯丙胺酸之研究, 碩士論文, 逢甲大學, 台中 (1992).
莊瑞鑫, 以二(2-乙基己基)磷酸萃取金屬離子之質量傳送, 博士論文
國立成功大學, (1986).
黃淑專, 利用乳化液膜系統萃取Cd2+離子並合成CdS奈米微粒, 碩士論文, 逢甲大學, 台中 (2000).
歐靜枝, Ed. (1992). 乳化. 乳化溶化技術實務-界面活性劑應用例、乳化溶化應用實例, 復漢出版社.
蔡德華, 以溶劑萃取和支撐式液膜分離鈷(II)和鎳(II)之研究, 碩士論文, 國立成功大學, 台南 (1991).
鄭東文, 中空纖維薄膜超過濾之硏究, National Taiwan University Graduate Institute of Chemical Engineering., (1992).
黎正中與陳源樹, Ed. (1993). 因子設計簡介. 實驗設計與分析. 台北, 高立.
賴碧玉, 乳液安定性控制因素, 碩士論文, 元智大學, 桃園 (1992).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊