跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅安諾
研究生(外文):AnupKumar Roy
論文名稱:脈衝式微波輔助合成鉑觸媒之研究
論文名稱(外文):Preparation of Pt-based Catalysts by Pulse Microwave-assisted Deposition
指導教授:謝建德謝建德引用關係
指導教授(外文):Chien-TeHsieh
口試委員:陳金銘吳茂松
口試日期:2012-6-14
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:100
語文別:英文
論文頁數:93
中文關鍵詞:脈衝微波還原法多元醇合成法鉑觸媒奈米碳管電化學分析燃料電池
外文關鍵詞:Carbon nanotubesElectrochemical activityFuel cellsMP factorPulse microwavePolyol synthesisPt catalysts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究以鉑成份觸媒,結合觸媒化學氣相沉積法所製備之奈米碳管/碳紙基材,作為質子交換膜燃料電池陽極。實驗方法是以乙二醇作為還原劑並結合脈衝微波還原法直接將觸媒還原在奈米碳管/碳紙基材上。觸媒的特性則藉由電化學測試系統、熱重分析儀、X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡及膜電極組測試進行分析。分析結果顯示電化學觸媒均勻且一致的附著在酸化處理後的奈米碳管表面上,而觸媒的粒徑大小最低可達到2.1 nm且均勻分佈於碳材表面。本實驗設計了三種膜電極組,分別為自製陽極-商購陰極、商購陽極-自製陰極及商購陽極-商購陰極,在自製陽極-商購陰極之膜電極組測試中顯示觸媒製程CAT 3-1 (ton : toff = 3s : 1s)、CAT.2-1 (ton : toff = 2s : 1s)、CAT 3-2 (ton : toff = 3s : 2s)在燃料電池工作溫度40°C及80°C分別展現其最高功率密度為5.94、6.67、8.60 kW g Pt-1及6.39、8.00、11.41 kW g Pt-1,結果顯示觸媒製程CAT 3-2的表現效能最佳,再以此參數製作商購陽極-自製陰極膜電極組與商購陽極-商購陰極膜電極組做比較,在燃料電池工作溫度40°C及80°C其表現出最高功率密度為4.90、1.60 kW g Pt-1以及5.45、1.90 kW g Pt-1。由實驗結果可知,當脈衝比(ton / toff)較高時,觸媒顆粒大小隨之增加,展現出較差的分散性,並且影響其觸媒活性、穩定性及燃料電池功率密度。由膜電極組及循環伏安法測試發現觸媒表現出良好的活性與耐久性,此結果顯示奈米碳管的添加使得電子傳輸速度提升,並增加觸媒基材的耐久性。以奈米碳管為基材結合脈衝微波還原的快速製備方法,將可使鉑觸媒分散地更平均並且電子可進行一維傳輸,加速氧化還原的速度。膜電極組測試結果顯示,本研究所製備的電極比起商購電極表現出較高效能。這些觸媒效能差異,可歸因於奈米碳管的添加、觸媒粒徑及分散性等差異所造成。此結果證明了本研究所製備之氣體擴散電極(Gas Diffusion Electrode, GDE) 可大幅度提升燃料電池之效能,並提供一種快速及高性能的GDE製備技術。
This study represents a comprehensive pulse microwave assisted polyol synthesis method to deposit Pt catalyst onto the surface of multiwalled carbon nanotubes (CNTs). Three different catalysts were prepared using three different microwave pulse configuration namely CAT 3-1 (ton : toff = 3s : 1s); CAT.2-1 (ton : toff = 2s : 1s) and CAT 3-2 (ton : toff = 3s : 2s) The microstructure, morphology and Pt loading of the as-prepared catalysts were investigated by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and thermogravimetric analysis (TGA). XRD and HR-TEM results revealed that the CAT 3-2 catalyst possessed the smallest mean particle size of 2.1 nm and most uniform distribution among all the synthesized catalysts. The electrochemical activity and stability of the Pt-CNT electrocatalysts were investigated in 1.0 M H2SO4 using cyclic voltammetry (CV). The results indicates that CAT 3-2 exhibits the highest SESA value and fairly good stability after potential cycling > 1000 cycles as compared to other two catalyst. The order of the catalysts in terms of SESA value was found to be CAT 3-2 > CAT 2-1 > CAT 3-1.
The performance of the as synthesized catalyst for hydrogen oxidation reaction (HOR) was analyzed using single cell proton exchange membrane fuel cell (PEMFC) measurements in a membrane electrode assembly (MEA) with 5 cm2 active area at two different operating temperatures (40°C and 80°C). The as synthesized catalyst constructs the anode electrode and a commercial GDE was the cathode. The maximum power density based on anode loading for all three catalysts were found to be 5.94, 6.67 and 8.60 kW g Pt-1 at 40°C and 6.39, 8.00 and 11.41 kW g Pt-1 at 80°C for CAT 3-1, CAT 2-1 and CAT 3-2, respectively. The overall performance of the catalysts was ordered as CAT 3-2 > CAT 2-1 > CAT 3-2.
Also from these investigations it was found that microwave pulse configuration have a profound effect on the performance of the Pt-CNT catalysts. As the MP factor (ton / toff) increases the bigger particle size and poor uniformity of Pt nanoparticles can be observed on the carbon support which in turn affects the catalytic activity, stability and the maximum power density of the electrocatalyst.

Based on the catalyst characterization results, CV results and single cell performance of three Pt-CNT catalyst fabricated, CAT 3-2 electrocatalyst was selected to test further its activity towards oxygen reduction reaction (ORR) in a single cell PEMFC. The MEA fabricated with 'Homemade Cathode-Commercial Anode' configuration using CAT 3-2 was investigated using single cell system. Also the 'Commercial Anode-Commercial Cathode' MEA was tested. The experimental results revealed that the maximum power density based on cathode loading for these MEAs are 4.90 and 1.60 kW g Pt-1 at 40°C, and 5.45 and 1.90 kW g Pt-1 at 80°C for CAT 3-2 and commercial MEA, respectively. i.e., The CAT 3-2 electrocatalyst performs better compared to the commercial GDE although it has a lower Pt loading then the commercial GDE. The long term durability test of CAT 3-2 MEA also show excellent durability comparable to the commercial MEA.
All the experimental results suggest that pulse microwave assisted polyol synthesis can be utilized as effective catalyst preparation method for synthesizing PEMFC electrocatalyst with improved catalytic activity and stability towards HOR and ORR.
Contents
Page No.
Abstract..........................................................................................................................I
Chinese Abstract.........................................................................................................III
Acknowledgement…………………………………………………………………..IV
List of Figures..........................................................................................................VIII
List of Tables.............................................................................................................XII

Chapter 1. Introduction..........................................................................................1
1.1 Energy Crisis, A Global Concern.......................................................................1
1.2 History of Fuel Cell............................................................................................2
1.3 Why Microwave assisted Pt deposition?............................................................6
1.4 Objective of the Research...................................................................................7
1.5 Research Framework..........................................................................................8

Chapter 2. Literature review..................................................................................9
2.1 Overview of Fuel Cells......................................................................................9
2.2 Proton Exchange Membrane Fuel Cell (PEMFC)............................................11
2.3 Basic Principles of PEMFC..............................................................................14
2.3.1 Thermodynamic Aspects.........................................................................14
2.3.2 Kinetic Aspects........................................................................................17
2.3.2.1 Activation Losses...........................................................................18
2.3.2.2 Ohmic Losses.................................................................................19
2.3.2.1 Mass transport or Concentration Losses........................................19
2.3.2.1 Fuel Crossover and Internal Currents.............................................19
2.3.3 Three Phase Boundary.............................................................................20
2.4 Electrocatalysts for PEMFCs...........................................................................21
2.4.1 Anode Electrocatalysts in PEMFCs........................................................21
2.4.2 Cathode Electrocatalyst in PEMFCs.......................................................23
2.5 Carbon Supports for Electrocatalysts...............................................................25
2.5.1 Carbon Black Supports............................................................................26
2.5.2 Carbon Nanotube Supports.....................................................................27
2.6 PEMFC Electrocatalyst Preparation Methods..................................................29
2.6.1 Wet Process.............................................................................................29
2.6.1.1 Chemical Process...........................................................................29
2.6.1.1 Electrochemical Process.................................................................31
2.6.2 Dry Process.............................................................................................32
2.7 Microwave Assisted Synthesis.........................................................................34
2.7.1 Microwave Heating Theory.....................................................................34
2.7.2 Comparison of Microwave and Conventional Heating...........................37
2.7.3 Pulse Microwave Assisted Synthesis......................................................39

Chapter 3. Experimental......................................................................................40
3.1 Materials and Chemicals..................................................................................40
3.2 Instruments and Apparatus...............................................................................41
3.3 Experimental Methods.....................................................................................42
3.3.1 CNT Oxidation........................................................................................42
3.3.2 Pt-CNT Catalyst Synthesis......................................................................43
3.3.3 Fabrication of Pt-CNT/CP electrodes.....................................................45
3.3.4 Membrane Electrode Assembly (MEA) Fabrication...............................46
3.4 Characterization Techniques............................................................................47
3.4.1 Field Emission Scanning Electron Microscopy......................................48
3.4.2 Transmission Electron Microscopy.........................................................49
3.4.3 X-Ray Diffraction Pattern......................................................................50
3.4.4 Thermogravimetric Analysis...................................................................52
3.5 Electrochemical Measurement.........................................................................54
3.6 Single cell test..................................................................................................56

Chapter 4. Results &; discussion...........................................................................57
4.1 Pt deposition Mechanism.................................................................................57
4.2 Catalyst Characterization.................................................................................59
4.2.1 FE-SEM...................................................................................................59
4.2.2 HR-TEM..................................................................................................61
4.2.3 X-Ray Diffraction (XRD).......................................................................68
4.2.4 Thermo Gravimetric Analysis (TGA).....................................................70
4.3 Electrochemical Analysis.................................................................................72
4.4 Performance of Single Cell..............................................................................78
4.4.1 Homemade Anode - Commercial Cathode.............................................78
4.4.2 Homemade Cathode - Commercial Anode.............................................81
4.4.3 Durability of the MEA............................................................................83

Chapter 5. Conclusions.........................................................................................87

References...................................................................................................................88

List of Figures

Fig. 1.1 Sketch of William Grove's 1839 fuel cell............................................ ….2
Fig. 1.2 Research Framework........................................................................... ….8
Fig. 2.1 A schematic depiction of fuel cell operation....................................... ...10
Fig. 2.2 Schematic diagram of a PEMFC......................................................... ...11
Fig. 2.3 (a) Molecular structure of NafionR, (b) Schematic representation of ion clustering in NafionR.................................................................... ...12
Fig. 2.4 Typical fuel cell polarization curve..................................................... ...17
Fig. 2.5 Three-phase boundary: pores for gas diffusion; NafionR for H+ conduction; catalyst particle, carbon substrate and carbon paper support for electron conduction........................................................... ...20
Fig. 2.6 Current-voltage cells of binary Pt-based anodes in H2/150 ppm CO: (♦) Pt, (+) PtRu, (●) PtW, (○) PtSn. The load of the anode and cathode was 0.4 mg cm-2..................................................................... ...22
Fig. 2.7 The bridge model of oxygen reduction on Pt, where z represents the oxidation state..................................................................................... ...23
Fig. 2.8 Galvanostatic-polarization curves of various Pt-based nanomaterials with catalyst loadings of 4.7 mg cm-2 in a 0.5 M H2SO4 solution at room temperature................................................................................ ...24
Fig. 2.9 Pattern of MWNT................................................................................ ...27
Fig. 2.10 Schematic of chemical synthesis of supported metal nanoparticles... ...29
Fig. 2.11 Size controllable chemical methods to produce Pt nanoparticles on carbon supports................................................................................... ...30

Fig. 2.12 Electrochemical deposition of Pt on the electrode: (a) NafionR impregnated cathode, (b) PEM on cathode, (c) no PEM or NafionR on cathode........................................................................................... ...31
Fig. 2.13 Schematic of dry process.................................................................... ...32
Fig. 2.14 Schematic of dual ion-beam-assisted deposition................................ ...32
Fig. 2.15 Schematic of sputtering....................................................................... ...33
Fig. 2.16 Multiple layer sputtering..................................................................... ...33
Fig. 2.17 Differences in the temperature-time profiles for conventional and microwave dielectric heating.............................................................. ...37
Fig. 3.1 Schematic of CNT oxidation process.................................................. ...42
Fig. 3.2 Schematic of Pt deposition by pulse microwave irradiation............... ...44
Fig. 3.3 Schematic of Pt-CNT/CP electrode preparation................................. ...45
Fig. 3.4 Schematic of of MEA fabrication....................................................... ...46
Fig. 3.5 Field Emission Scanning Electron Microscope (FE-SEM) device..... ...48
Fig. 3.6 Transmission Electron Microscope device......................................... ...49
Fig. 3.7 X-ray diffractometer............................................................................ ...50
Fig. 3.8 Thermogravimetric analyzer............................................................... ...52
Fig. 3.9 Schematic of the cyclic voltammetry system with the three electrode configuration used............................................................... ...54
Fig. 3.10 Electrode preparation for electrochemical test of three-electrode system.................................................................................................. ...55
Fig. 3.11 Expanded view of a PEMFC single fuel cell stack............................. ...56
Fig. 4.1 Schematic illustration of Pt deposition mechanism onto CNT........... ...58
Fig. 4.2 FE-SEM micrograph CNT-CP composite, (a) top view (b) cross-sectional view............................................................................ ...60
Fig. 4.3 HR-TEM morphologies of CAT 3-1 at (a) low and (b) high magnification values........................................................................... ...62
Fig. 4.4 HR-TEM morphologies of CAT 2-1 at (a) low and (b) high magnification values........................................................................... ...63
Fig. 4.5 HR-TEM morphologies of CAT 3-2 at (a) low and (b) high magnification values........................................................................... ...64
Fig. 4.6 Particle size distribution histogram of (a) CAT 3-1, (b) CAT 2-1 and (c) CAT 3-2 from the TEM image....................................................... ...65
Fig. 4.7 Effect of MP factor on Pt particle size of the catalysts prepared by microwave assisted deposition............................................................ ...66
Fig. 4.8 Schematic depicting the influence of microwave pulse factor (PF) on the deposition of Pt nanoparticles on carbon support.................... ...67
Fig. 4.9 (a) X-ray diffraction patterns of all three Pt-CNT catalysts prepared by pulse microwave assisted polyol synthesis and (b) Pt (111) for all three Pt-CNT catalysts................................................................... ...68
Fig. 4.10 TGA curves for (a) CNT (blank) and (b) Pt-CNT electrocatalysts..... ...70
Fig. 4.11 Cyclic voltammetry profiles of (a) CAT 3-1, (b) CAT 2-1 and (c) CAT 3-2 in 1.0 M H2SO4 at different sweep rates of 10, 20, 30, 40, and 50 mV s-1...................................................................................... ...73
Fig. 4.12 Cyclic voltammetry profiles of (a) CAT 3-1, (b) CAT 2-1 and (c) CAT 3-2 in 1.0 M H2SO4 at 30mV s-1 sweep rate within 1000 CV cycles................................................................................................... ...74
Fig. 4.13 (a) The SESA, and (b) the normalized SESA values of the as prepared electrocatalysts as a function of CV cycle number............................. ...77

Fig. 4.14 Polarization curves obtained with MEA made of (a) CAT 3-1, (b) CAT 2-1 and (c) CAT 3-2.anode. The current and power density values are based on anode Pt loading.................................................. ...79
Fig. 4.15 Polarization curves obtained with MEA made of (a) CAT 3-2 cathode, and (b) commercial cathode. The current and power density values are based on cathode Pt loading.................................. ...81
Fig. 4.16 Constant-voltage durability test (at 0.7V) obtained with 'Commercial Anode - Homemade Cathode' and 'Commercial Anode - Commercial Cathode' MEAs at 60°C for 50 h................................. ...83
Fig. 4.17 Correlation between MP factor and (a) particle size, (b) ESA value, 200th cycle, (c) maximum power density at 40 and 80°C.................. ...85


List of Tables

Table 1.1 Comparison between fuel cells............................................................ ….4
Table 2.1 Relaxation times (20°C) and dielectric properties of some organic solvents................................................................................................ ...36
Table 3.1 List of materials and chemicals........................................................... ...40
Table 3.2 List of instruments and apparatus....................................................... ...41
Table 3.3 Microwave pulse configuration........................................................... ...43
Table 4.1 XRD and TEM results......................................................................... ...69
Table 4.2 Thermo gravimetric analysis data....................................................... ...71
Table 4.3 Performance of the fuel cell operated at 40 and 80°C (The power density is based on anode Pt loading)................................................. ...80
Table 4.4 Performance of the fuel cell operated at 40 and 80°C (The power density is based on cathode Pt loading).............................................. ...82
References

[1]http://en.wikipedia.org/wiki/World_energy_consumption.
[2]http://en.wikipedia.org/wiki/Carbon_dioxide_in_Earth's_atmosphere.
[3]http://en.wikipedia.org/wiki/Temperature_record_of_the_past_1000_years.
[4]W.G. Colella, M.Z. Jacobson, D.M. Golden, J. Power Sources 150 (2005) 150.
[5]M. Granovskii, I. Dincer, M.A. Rosen, Int. J. Hydrogen Energy 31 (2006) 337.
[6]C.E. Thomas, B.D. James, F.D. Lomax Jr., I.F. Kuhn Jr., Int. J. Hydrogen Energy 25 (2000) 551.
[7]B. Rohland, J. Nitsch, H. Wendt, J. Power Sources 37 (1992) 271.
[8]L.J.J. Jansen, J. Appl. Electrochem. 37 (2007) 1383.
[9]S. Abanades, G. Flamant, Chem. Eng. Commun. 195 (2008) 1159.
[10]R.J. Mantz, H. De Battista, Int. J. Hydrogen Energy 33 (2008) 4291.
[11]R.C. Saxena, D. Seal, S. Kumar, H.B. Goyal, Renew. Sust. Energ. Rev. 12 (2008) 1909.
[12]C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan, Nano Lett. 4 (2003) 345.
[13]J.H. Wee, K.Y. Lee, S.H. Kim, J. Power Sources 165 (2007) 667.
[14]A. Miura, H. Wang, B.M. Leonard, H.D. Abruna, F. DiSalvo, Chem. Mater. 21 (2009) 2661.
[15]G. Wand, "Fuel Cells History, Part 1" Johnson Matthey plc.
[16]W.R. Grove, Philosophical Magazine and Journal of Science XIV (1839) 127.
[17]W.R. Grove, Philosophical Magazine and Journal of Science XXI (1842) 417.
[18]http://en.wikipedia.org/wiki/Fuel_cells.
[19]http://www.iahe.org/advisory.asp?did=2.
[20]G. Hoogers, "Fuel Cell Technology Handbook", CRC Press, London and New York (2003).
[21]J. Wee, Renewable Sustainable Energy Rev. 11 (2007) 1720.
[22]M.S. Saha, R. Li, X. Sun, S. Ye, Electrochem. Commun.11 (2009) 438.
[23]T. Sakae, M. Hiroshi, M. Hideki, T. Eishi, K. Masahiro, J. Electrochem. Soc. 155 (2008) 929.
[24]A.M. Kannan, P. Kanagala, V. Veedu, J. Power Sources 192 (2009) 297.

[25]C.-T. Hsieh, W.-Y. Chen, I.-L. Chen, A.K. Roy, J. Power Sources 199 (2012) 94.
[26]C.-T. Hsieh, W.-M. Hung, W.-Y. Chen, J.-Y. Lin, Int. J. Hydrogen Energy 36 (2011) 2765.
[27]S. Srinivasan, E.A. Ticianelli, C.R. Derouin, A. Redondo, J. Power Sources 22 (1988) 359.
[28]I.D. Raistrick, US Patent No. 4,876,115 (1989).
[29]M.S. Wilson, S. Gottesfeld, J. Appl. Electrochem. 22 (1992) 1.
[30]G.S. Kumar, M. Raja, S. Parthasarathy, Electrochim. Acta 40 (1995) 285.
[31]M.S. Saha, A. Kundu, J. Power Sources 195 (2010) 6255.
[32]Y.-C. Chiang, J.-R. Ciou, Int. J. Hydrogen Energy 36 (2011) 6286.
[33]M.R. Khan, S.D. Lin, J. Power Sources 162 (2006) 186-191.
[34]D.L. Boxall, G.A. Delgua, E.A. Kenik, W.D. King, C.M. Lukehart, Chem. Mater. 13 (2001) 891.
[35]W. Xizhao, Z. Junsheng, F. Rong, M. Jianxin, Chin. J. Catal. 32 (2011) 599.
[36]K. Kordesch, G. Simader, “Fuel Cells and Their Applications” VCH (1996).
[37]http://americanhistory.si.edu/fuelcells/basics.htm.
[38]J.H. Hirschenhofer, D.B. Stauffer, R.R. Engliman, I.G. Klett, “Fuel Cell Handbook - Fuel Cell Description” (1998).
[39]http://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cell.
[40]EG&;G Technical Services, Inc., "Fuel Cell Handbook (7th Edition)" U.S. Department of Energy (2004).
[41]H.A. Gasteiger, S.S. Kocha, B. Sompalli, B. Wagner, Appl. Catal. B: Environ. 56 (2005) 9.
[42]G. Hoogers, D. Thompsett, Cattech 3 (2000) 106.
[43]J. O'M Bockris, S. Srinivasan, "Fuel Cells: Their Electrochemistry" McGraw-Hill (1969).
[44]K.R. Cooper, V. Ramani, J.M. Fenton, H.R. Kunz, "Experimental methods and data analyses for polymer electrolyte fuel cells" Scribner Associates Inc. USA (2005).
[45]J. Larminie, A. Dicks, "Fuel Cell Systems Explained-2nd Edn." John Wiley&;Sons, USA (2003).
[46]K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, J. Appl. Electrochem. 36 (2006) 507.
[47]L. Carrette, K.A. Friedrich, U. Stimming, Chem. Phys. Chem. 1 (2000) 162.
[48]B.N. Popov, “Novel Non-Precious Metal Catalysts for PEMFC: Catalyst Selection through Molecular Modeling and Durability Studies”, (2005) http://www.hydrogen.energy.gov/pdfs/progress05/vii_c_2_popov.pdf.
[49]M.M.P. Janssen, J. Moolhuysen, Electrochim. Acta 21 (1976) 869.
[50]J.M. Ogden, M.M. Steinbugler, T.G. Kruetz, J. Power Sources 79 (1999) 143.
[51]N.R. Elezović, L. Gajić-Krstaji, V. Radmilović, L. Vračard, N.V. Krstajić, Electrochim. Acta 54 (2009) 1375.
[52]Y. Liang, H. Zhang, B. Yi, Z. Zhang, Z. Tan, Carbon 43 (2005) 3144.
[53]S. Stolbov, M.A. Ortigoza, R. Adzic, T.S. Rahman, J. Chem. Phys. 130 (2009) 124714.
[54]H. Uchida, K. Izumi, K. Aoki, M. Watanabe, Phys. Chem. Chem. Phys. 11 (2009) 1771.
[55]R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Top. Catal. 46 (2007) 249.
[56]M. Gotz, H. Wendt, Electrochim. Acta 43 (1998) 3637.
[57]M. Mazurek, N. Benker, C. Roth, H. Fuess, Fuel Cells 3 (2006) 208.
[58]G.A. Camara, E.A. Ticianelli, S. Mukerjee, S.J. Lee, J.J. McBreen, Electrochem. Soc. 149 (2002) A748.
[59]Q. Yi, W. Huang, X. Liu, G. Xu, Z. Zhou, A. Chen, J. Electroanal. Chem. 197 (2008) 619.
[60]R. Venkataraman, H.R. Kunz, J.M.J. Fenton, Electrochem. Soc. 150 (2003) A278.
[61]C. He, H.R. Kunz, J.M.J. Fenton, Electrochem. Soc. 150 (2003) A1017.
[62]H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, Carbon 42 (2004) 191.
[63]E.B. Easton, “Chemical Modification of Fuel Cell Catalysts and Electrochemistry of Proton Exchange Membrane Fuel Cell Electrodes” PhD. Thesis. (2003) http://www.fuelcon.de/download/literatur/Lit0082.pdf.
[64]V.S. Murthi, R.C. Urian, S. Mukerjee, J. Phys. Chem. B 108 (2004) 11011.
[65]O. Antoine, Y. Bultel, R. Durand, J. Electroanal. Chem. 499 (2001) 85.
[66]L. Genies, R. Faure, R. Durand, Electrochim. Acta 44 (1998) 1317.
[67]A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, Langmuir 22 (2006) 2392.
[68]F. Maillard, M. Martin, F. Gloaguen, J.-M. Leger, Electrochim. Acta 47 (2002) 3431.
[69]L. Xiong, A.M. Kannan, A. Manthiram, Electrochem. Commun. 4 (2002) 898.
[70]H. Yang, C. Coutanceau, J.-M. Leger, N. Alonso-Vante, C. Lamy, J. Electroanal. Chem. 576 (2005) 305.
[71]S. Chen, P.J. Ferreira, W. Sheng, N. Yabuuchi, L.F. Allard, Y. Shao-Horn, J. Am. Chem. Soc. 130 (2008) 13818.
[72]E. Antolini, J.R.C. Salagado, L.G.R.A. Santos, G. Garcia, E.A. Ticianelli, E. Pastor, E.R. Gonzalez, J. Appl. Electrochem. 36 (2006) 355.
[73]H. Yang, N. Alonso-Vante, J.-M. Leger, C.J. Lamy, J. Phys. Chem. B 108 (2004) 1938.
[74]G. Chen, D. Delafuente, S. Pani, T. E. Mallouk, Catal. Today 67 (2001) 341.
[75]M.-Y. Lo, J.J. Huang, I.-H. Liao, "high performance carbon support materials for use in Direct Methanol Fuel Cell"
http://ecsmeet2.peerxpress.org/ms_files/ecsmeet2/2005/06/01/00022308/00/22308_0_art_file_0_1117681061.pdf.
[76]E. Budevski, J. Optoelectronics and Advanced Materials 5 (2003) 1319.
[77]A.M. Cassell, H.T. Ng, L. Delzeit, Q. Ye, J. Li, Y. Ha, M. Meyyappan, Appl. Catal. A: Gen., 254 (2003) 85.
[78]K.W. Park, Y.E. Sung, S.J. Han, Y.K. Yun, T.H. Hyeon, J. Phys. Chem. B 108 (2004) 939.
[79]X. Li, I.-M. Hsing, Electrochim. Acta, 51 (2006) 3477.
[80]Z. Zhao, Z. Guo, J. Ding, D. Wexler, Z. Ma, D. Zhang, H. Liu, J. Electro. Communications 8 (2006) 245.
[81]K.-T. Jeng, C.-C. Chien, N.-Y. Hsu, S.-C. Yen, S.-D. Chiou, S.-H Lin, W.-M. Huang, J. Power Sources 160 (2006) 97.
[82]W. Li, C. Liang, J. Qin, H. Li, G. Sun, Q. Xin, Carbon 42 (2004) 436.
[83]M. Wang, J. Chen, Z. Fen, H. Tand, G. Deng, D. He, Y. Kuang, Carbon 42 (2004) 3257.
[84]E. Frackowiak, G. Lota, T.Cacciaguerra, F. Beguin, J. Elcrtro. Communications 8 (2006) 129.
[85]N. Rajalakshmi, Hojin Ryu, M.M. Shaijumon, S. Ramaprabhu, J. Power Sources 140 (2005) 250.
[86]Z. Liu, L. Gan, L. Hong, W. Chen, J.Y. Lee, J. Power Sources 139 (2005) 73.
[87]M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, J. Power Sources 142 (2005) 169.
[88]W. Li, C. Liang, J. Qin, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon 40 (2002) 791.
[89]L.R. Jordan, A.K. Shukla, J. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth, J. Applied Electrochemistry 30 (2000) 641.
[90]X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Nano Letters 9 (2009) 3137.
[91]http://en.wikipedia.org/wiki/Carbon_nanotube.
[92]S. Kumar, “Carbon Nanotubes: A Small-scale Wonder” Chemical Engineering February (2003).
[93]K.Y. Chen, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, J. Mater Chem. 14 (2004) 505.
[94]E.J. Taylor, E.B. Anderson, N.R.K. Vilambi, J. Electrochem. Soc. 139 (1992) L45.
[95]M.W. Verbrugge, J. Electrochem. Soc. 141 (1994) 46.
[96]H. Kim, N.P. Subramaniam, B.N. Popov, J. Power Sources 138 (2004) 14.
[97]K.H. Choi, H.S. Kim, T.H. Lee, J. Power Sources 75 (1998) 230.
[98]S. Hirano, J. Kim, S. Srinivasan, Electrochim. Acta 42 (1997) 1587.
[99]S.Y. Cha, W.M. Lee, J. Electrochem. Soc. 146 (1999) 4055.
[100]R. O'Hayre, S. Lee, S. Cha, F.B. Prinz, J. Power Sources 109 (2002) 483.
[101]E.A. Ticianelli, C.R. Derouin, S. Srinivasan, J. Electroanal. Chem. 251 (1988) 275.
[102]S. Mukharjee, S. Srinivasan, A.J. Appleby, Electrochim. Acta 38 (1993)1661.
[103]C.A. Cavalca, J.H. Arps, M. Murthy, US pat. No. 6,300,000 (2001).
[104]A.T. Huang, R.E. White, J.W. Weidner, W. Huang, S. Shi, T. Stoner, N. Rana, J. Electrochem. Soc. 149 (2002) A280.
[105]D. Gruber, N. Ponath, J. Muller, F. Lindstaedt, J. Power Sources 150 (2005) 67.

[106]A.F. Gulla, M.S. Saha, R.J. Allen, S. Mukharjee, Electrochem. Solid-State Lett. 8 (2005) A504.
[107]A.F. Gulla, M.S. Saha, R.J. Allen, S. Mukharjee, J. Electrochem. Soc. 153 (2006) A366.
[108]N. Cunningham, E. Irissou, M. Lefevre, M.-C. Denis, D. Guay, J.-P. Dodelete, Electrochem. Solid-State Lett. 6 (2003) A125.
[109]http://0rz.tw/b52QX.
[110]J.P. Tierney, P. Lidstrom, "Microwave assisted organic synthesis" CRC Press, USA and Canada (2005).
[111]O.C. Kappe, Angew. Chem. Int. Ed. 43 (2004) 6250.
[112]D.A. Copson, "Microwave Heating: In freeze drying, electronic ovens and other applications" The AVI publishing Company Inc. USA (1962).
[113]C.-T. Hsieh., W.-M. Hung, W.-Y. Chen, Int. J. Hydrogen Energy 35 (2010) 8425.
[114]E. Lebegue, S. Baranton, C. Coutanceau, J. Power Sources 196 (2011) 920.
[115]S. Yin, L. Luo, C. Xu, Y. Zhao, Y. Qiang, S. Mu, J. Power Sources 198 (2012) 1.
[116]W. Chen, J. Zhao, J.Y. Lee, Z. Liu, Mater. Chem. Phys. 91 (2005) 124.
[117]W.X. Chen, J.Y. Lee, Z. Liu, Mater. Lett. 58 (2004) 3166.
[118]J. Zhao, W. Chen, Y. Zheng, X. Li, Z. Xu, J. Mater. Sci. 41 (2006) 5514.
[119]W.X. Chen, J.Y. Lee, Z. Liu, Chem. Commun. (2002) 2588.
[120]M. Sakthivel, A. Schlange, U. Kunz, T. Turek, J. Power Sources 195 (2010) 7083.
[121]S.Q. Song, Y. Wang, P.K. Shen, J. Power Sources 170 (2007) 46.
[122]S. Song, J. Liu, J. Shi, H. Liu, V. Maragou, Y. Wang, Appl. Catal. B: Environ. 103 (2011) 287.
[123]P. Kundu, C. Nethravathi, P.A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Chem. Mater. 23 (2011) 2722.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊