跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/01/29 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉長庚
研究生(外文):Cheng-Geng Ye
論文名稱:聚苯胺/氧化石墨烯奈米複合材料之合成及其電容效能研究
論文名稱(外文):Study on the synthesis and electrochemical storage properties of polyaniline/ graphene nanocomposites
指導教授:廖建勛
指導教授(外文):Chien-ShiunLiao
口試委員:吳宗明蔡毓楨
口試委員(外文):Tzong-MingWuTzong-MingWu
口試日期:2012-7-14
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:100
語文別:英文
論文頁數:76
中文關鍵詞:聚苯胺氧化石墨烯微波輔助合成超級電容
外文關鍵詞:PANIGOmicrowave-assisted synthesissupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用微波輔助合成方式製備不同重量比的奈米桿狀結構聚苯胺/氧化石墨烯複合材料,同時也在高溫下以石墨烯搭載鉑金屬做為基材與觸媒,在無任何氧化劑的環境中以無電聚合方式製備奈米桿狀結構聚苯胺/鉑-石墨烯,並探討其電化學性質。實驗佐以X光繞射分析儀、傅立葉轉換光譜、場發射電子顯微鏡、電化學分析儀探討聚苯胺/氧化石墨烯在不同聚合環境下與無電聚合上的結構差異與其電化學性質。本文發現在不同聚合環境(微波、室溫)的過程中,微波輔助合成除了可以縮短原本室溫下長時間的聚合反應外更對聚苯胺奈米桿狀結構的生成具有相當程度的影響。而在電化學測試結果,微波輔助合成的方式在高比例4:1,0.1 Ag-1的情況下有著較高的電容值340 Fg-1,聚苯胺/氧化石墨烯奈米複合材料無論是在微波輔助合成反應或是室溫反應,其比電容值與在較高電流密下的電容行為均高於單純聚苯胺,顯示聚苯胺與氧化石墨烯之間有著良好的協同效應。另外以鉑-石墨烯為觸媒,進行無電聚合所製備的奈米桿聚苯胺/鉑-石墨烯,在電流密度1 Ag-1時其電容值為292 Fg-1,而在3 Ag-1 時,僅有約15%的電容損失(248Fg-1)顯示聚苯胺/鉑-石墨烯複合材料在快速充放電的過程中也有不錯的電容表現。
ABSTRACT
The study is focus on the electrochemical property of microwave assisted synthesis polyaniline nanofibers/graphene oxide (PANI/GO) composite with different mass ratio. Besides, this study also used Pt deposited graphene as electrocatalyst and for the preparation of PANI/Pt-graphene without oxidant by electroless polymerization. The electrochemical property and structure of as-prepared composites were characterized by wide-angle X-ray diffractometery (XRD), Fourier transformed infrared (FTIR), field emission scanning electron microscope (FE-SEM) and electrochemical analyzer. The microwave-assisted synthesis shortens the polymerization time and has significant effects on the formation of PANI nanofibers, compared with the conventional procedure, the PANI/GO at 4:1 ratio by microwave synthesis reveals a higher specific capacitance 340 Fg-1 at current density of 0.1 Ag-1. In comparison, the PANI/Pt-graphene has a capacitance 294 Fg-1 at current density of 1 Ag-1. At a current density of 3 Ag-1, the specific capacitance maintained 248 Fg-1 with only 15% decrease reveals that the nanocomposite has a better capacitance at rapid charge-discharge procedure.
摘要 I
ABSTRACT II
Catalog III
List of Figures VI
List of Tables X
Chapter 1 Introduction 1
1-1 Foreword 1
1-2 Present status 3
1-3 Research motives 4
Chaper2 Literature review 5
2-1. Electrochemical capacitors 5
2-1-1 Electrochemical double layer capacitors 5
2-1-2 Pseudo-capacitors 7
2-1-3 Hybrid capacitors 8
2-2 Principle of electrochemical capacitors measurement 9
2-2-1 Cyclic voltammetry (CV) 9
2-2-2 Galvanostatic charge-discharge cycling 10
2-2-3 Electrochemical impedance spectroscopy (EIS) 11
2-3 Microwave assisted synthesize 12
2-4 Graphene 14
2-4-1 Development of carbon materials 14
2-4-2 Introduction of graphene 16
2-4-3 Carbon materials in supercapacitor 19
2-5 Polyaniline 21
2-5-1 Introduction of polyaniline 21
2-5-2 Morphology of polyaniline 23
2-5-3 Mechanism of energy storage for polyaniline in supercapacitors 24
2-5-4 Application of PANI/GO in supercapacitors 25
Chapter 3 Experimental content 28
3-1 Research framework 28
3-2 Materials 29
3-3 Instruments 30
3-4 Instrument analysis and measurement 31
3-5 Preparation of GO and Pt/GN electrocatalyst 33
3-5-1 Preparation of GO 33
3-5-2 Preparation of Pt/GN electrocatalyst 33
3-6 Preparation of polyaniline/graphite oxide 34
3-6-1 Microwave-assisted synthesized polyaniline/GO 34
3-6-2 Conventional procedures synthesized polyaniline/GO 36
3-7 Preparation of PANI/Pt-GN 37
3-8 Electrochemical performance measurement 38
Chapter4 Results and Discussion 39
4-1 Characterization of graphene oxide and Pt-graphene 39
4-1-1 Structure of graphene oxide 39
4-1-2 Structure of Pt/graphene (Pt/GN) 43
4-1-3 Morphology of graphene oxide and Pt-graphene 45
4-2 Characterization of microwave-assisted synthesized PANI/GO 46
4-2-1 Structural of microwave-assisted synthesis PANI/GO. 46
4-2-2 Morphology of Microwave-assisted synthesized PANI/GO 49
4-2-3 Electrochemical performance of MW-PANI/GO composites 51
4-4 Characterization of electroless synthesized PANI/Pt-GN 57
4-4-1 Characterization of PANI/Pt-GN 57
4-4-2 Morphology of PANI/Pt-GN 60
4-4-3 Electrochemical performance of PANI/Pt-GN composites 61
Conclusion 63
Reference 64
Appendix 68
Characterization of conventional procedures synthesis PANI/GO 68
Structural of conventional procedures synthesis PANI/GO. 68
Morphology of conventional procedures synthesis PANI/GO 70
Electrochemical performance of PANI/GO composites 71
Electrochemical impedance spectroscopy (EIS)-Fitting data 74
[1]A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, vol. 157, pp. 11-27, 2006.
[2]P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nat Mater, vol. 7, pp. 845-854, 2008.
[3]P. J. Hall and E. J. Bain, "Energy-storage technologies and electricity generation," Energy Policy, vol. 36, pp. 4352-4355, 2008.
[4]J. Yang, et al., "Carbon Electrode Material with High Densities of Energy and Power," Acta Physico-Chimica Sinica, vol. 24, pp. 13-19, 2008.
[5]A. Lewandowski and M. Galinski, "Practical and theoretical limits for electrochemical double-layer capacitors," Journal of Power Sources, vol. 173, pp. 822-828, 2007.
[6]Y. Zhang, et al., "Progress of electrochemical capacitor electrode materials: A review," International Journal of Hydrogen Energy, vol. 34, pp. 4889-4899, 2009.
[7]O. Barbieri, et al., "Capacitance limits of high surface area activated carbons for double layer capacitors," Carbon, vol. 43, pp. 1303-1310, 2005.
[8]T. Katakabe, et al., "Electric Double-Layer Capacitors Using ``Bucky Gels' Consisting of an Ionic Liquid and Carbon Nanotubes," Journal of The Electrochemical Society, vol. 152, pp. A1913-A1916, 2005.
[9]Z. S. Wu, et al., "Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors," Advanced Functional Materials, vol. 20, pp. 3595-3602, 2010.
[10]D. Susanti, et al., "Hybrid electrochemical capacitor of IrO2 nanocrystal and hydrous RuO2," Science of Advanced Materials, vol. 2, pp. 552-559, 2010.
[11]H. K. Kim, et al., "Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors," Thin Solid Films, vol. 475, pp. 54-57, 2005.
[12]Y. Takasu, et al., "Dip-coated Ru-V oxide electrodes for electrochemical capacitors," Journal of The Electrochemical Society, vol. 144, pp. 2601-2606, 1997.
[13]D. Zhang, et al., "Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors," Journal of Power Sources, vol. 196, pp. 5990-5996, 2011.
[14]N. H. Williams, J. Microwave Power, p. 123,1967.
[15]R. N. Gedye, et al., "The rapid synthesis of organic compounds in microwave ovens," Canadian Journal of Chemistry, vol. 66, pp. 17-26, 1988/01/01 1988.
[16]A. Bose, et al., "Microwave-induced organic reaction enhancement (more) chemistry: Techniques for rapid, safe and inexpensive synthesis," Research on Chemical Intermediates, vol. 20, pp. 1-11, 1994.
[17]Maynard, B. J. Sonochemistry. Chemstry, vol. 17, Summer 2000.
[18]D. Kuznetsov, et al., "Microwave Activation in Organic Synthesis," Russian Journal of Organic Chemistry, vol. 41, pp. 1719-1749, 2005.
[19]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-191, 2007.
[20]Y. Liu, et al., "Negative carbon cluster ion beams: New evidence for the special nature of C60," Chemical Physics Letters, vol. 126, pp. 215-217, 1986.
[21]S. Pisana, et al., "Breakdown of the adiabatic Born-Oppenheimer approximation in graphene," Nat Mater, vol. 6, pp. 198-201, 2007.
[22]P. Melinon, et al., "Playing with carbon and silicon at the nanoscale," Nat Mater, vol. 6, pp. 479-490, 2007.
[23]J. C. K. Utuje, "Nanoscale Sensors Using Graphene and Carbon Nanotubes," African Institute for Mathematical Sciences (AIMS), 2011.
[24]K. V. Emtsev, et al., "Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study," Physical Review B, vol. 77, p. 155303, 2008.
[25]A. Reina, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, 2009/01/14 2008.
[26]D. Li, et al., "Processable aqueous dispersions of graphene nanosheets," Nat Nano, vol. 3, pp. 101-105, 2008.
[27]J. Gamby, et al., "Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors," Journal of Power Sources, vol. 101, pp. 109-116, 2001.
[28]Y. J. Kim, et al., "Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons," Carbon, vol. 42, pp. 1491-1500, 2004.
[29]S. Atcitty, "Electrochemical capacitor characterization for electric utility applications," Ph.D. 3332661, Virginia Polytechnic Institute and State University, United States -- Virginia, 2006.
[30]S. G. Lee, et al., "Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees," Journal of Industrial and Engineering Chemistry, vol. 17, pp. 450-454, 2011.
[31]S. T. Senthilkumar, et al., "Preparation of activated carbon from sorghum pith and its structural and electrochemical properties," Materials Research Bulletin, vol. 46, pp. 413-419, 2011.
[32]D. W. Jung, et al., "Characterization of electric double-layer capacitors with carbon nanotubes directly synthesized on a copper plate as a current collector," Journal of Korean Institute of Metals and Materials, vol. 49, pp. 419-424, 2011.
[33]I. Mukhopadhyay, et al., "Studies on surface functionalized single wall carbon nanotube for Electrochemical double layer capacitor application," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 4089-4094, 2010.
[34]T. Inoue, et al., "Electric double layer capacitance of graphene-like materials derived from single-walled carbon nanotubes," Japanese Journal of Applied Physics, vol. 50, 2011.
[35]X. Du, et al., "Graphene nanosheets as electrode material for electric double-layer capacitors," Electrochimica Acta, vol. 55, pp. 4812-4819, 2010.
[36]W. Lu, et al., "High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes," Journal of Power Sources, vol. 189, pp. 1270-1277, 2009.
[37]B. Fang and L. Binder, "Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor," Electrochimica Acta, vol. 52, pp. 6916-6921, 2007.
[38]B. Xu, et al., "Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors," Electrochimica Acta, vol. 52, pp. 4595-4598, 2007.
[39]M. Egashira, et al., "Toluene-insoluble fraction of fullerene-soot as the electrode of a double-layer capacitor," Journal of Power Sources, vol. 148, pp. 116-120, 2005.
[40]Y. Chen, et al., "Electroless polymerization of aniline on platinum and palladium surfaces," Applied Surface Science, vol. 185, pp. 267-276, 2002.
[41]J. Han, et al., "Nanostructure-Based Leaf-like Polyaniline in the Presence of an Amphiphilic Triblock Copolymer," Advanced Materials, vol. 19, pp. 2993-2999, 2007.
[42]Y. Zhu, et al., "Rose-like microstructures of polyaniline by using a simplified template-free method under a high relative humidity," Macromolecular Rapid Communications, vol. 29, pp. 1705-1710, 2008.
[43]C. Zhou, et al., "Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures," Macromolecules, vol. 41, pp. 6473-6479, 2008.
[44]J. Fei, et al., "Formation of PANI tower-shaped hierarchical nanostructures by a limited hydrothermal reaction," Journal of Materials Chemistry, vol. 19, pp. 3263-3267, 2009.
[45]Y. F. Huang, et al., "Alternative platinum electrocatalyst supporter with micro/nanostructured polyaniline for direct methanol fuel cell applications," Electrochimica Acta, vol. 56, pp. 5679-5685, 2011.
[46]S. K. Dhawan, "Electromagnetic shielding behaviour of conducting polyaniline composites " Science and Technology of Advanced Materials, vol. 4, 2003.
[47]X. Yan, et al., "Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor," Nanoscale, vol. 3, 2011.
[48]M. Xue, et al., "Structure-Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns," Advanced Functional Materials, vol. 22, pp. 1284-1290, 2012.
[49]N. A. Kumar, et al., "Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors," ACS Nano, vol. 6, pp. 1715-1723, 2012/02/28 2012.
[50]X.-M. Feng, et al., "One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications," Advanced Functional Materials, vol. 21, pp. 2989-2996, 2011.
[51]J. Xu, et al., "Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage," ACS Nano, vol. 4, pp. 5019-5026, 2010.
[52]J. Liu, et al., "Porous polyaniline exhibits highly enhanced electrochemical capacitance performance," Electrochimica Acta, vol. 55, pp. 5819-5822, 2010.
[53]H. Wang, et al., "Graphene oxide doped polyaniline for supercapacitors," Electrochemistry Communications, vol. 11, pp. 1158-1161, 2009.
[54]D.-W. Wang, et al., "Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode," ACS Nano, vol. 3, pp. 1745-1752, 2009/07/28 2009.
[55]H. Wang, et al., "A nanostructured graphene/polyaniline hybrid material for supercapacitors," Nanoscale, vol. 2, pp. 2164-2170, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊