跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許景義
研究生(外文):Ching-Yi Hsu
論文名稱:水熱法合成二氧化鋯奈米微粒之成長機制
論文名稱(外文):Growth Mechanisms of Zirconia Sol Prepared from Hydrothermal Synthesis
指導教授:張幼珍
口試委員:江右君鄭貴元
口試日期:2012-6-29
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:127
中文關鍵詞:二氧化鋯水熱法合成成長機制自組裝凝結
外文關鍵詞:coagulation.ZirconiaHydrothermal SynthesisGrowth Mechanismsself-assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目標在研究以水熱法製備氧化鋯溶膠的微粒成長機制。研究中利用動態光散射量測兩個不同前驅物起始濃度和製備方法的氧化鋯溶膠微粒成長曲線,以場發射掃描式電子顯微鏡觀察氧化鋯的次微粒自組裝單元與溶膠的形貌,結果顯示S形成長曲線不同斜率的區段,自組裝單元組裝的速率不同,最快速率為每小時增加一個次單元。以場發射掃描式電子顯微鏡觀察氧化鋯次微粒單元與溶膠形貌發現,不同濃度下的次微粒單元在組裝初期皆為6~8nm,但在顆粒成長後期,次微粒在0.05M濃度成長為6~10nm,在0.2M濃度則成長為6~20nm,且在不同濃度下,每個生長階段次微粒單元的自組裝速率皆不同。不論是次微粒單元自組裝速率、還是次微粒成長變化,兩者皆影響氧化鋯的成長曲線斜率大小,本研究提出不同濃度下氧化鋯的成長模型機制。
關鍵字:二氧化鋯、水熱法合成、成長機制、自組裝、凝結
The objectives of this study are to investigate the growth mechanisms of hydrothermally prepared zirconia sols. Dynamic light scattering (DLS) was used to obtain the growth curves for four different precursor solutions. FE-SEM micrographs of sampled particles at different reflux time along the curve were used to perform intra-particle analysis on sampled particles. An S-shaped growth curve revealed the growth rate (slope) varies notably from one stage to the other. Intra-particle analysis revealed subunit addition rate as fast as one per hour at first half of the constant growth period in all cases. In subsequent growth, the decrease in the slope was due to a much slower subunit addition rate. For both precursor concentrations, 0.05M and 0.2M zirconium oxychloride solutions, the subunit size are 6-8nm initially, they grow larger with time to 6-10nm and 6-20nm, respectively. That is, the growth rate is a function of both the rate of subunit addition and the subunit size. Detailed growth models for both precursor concentrations are proposed.
Key word:Zirconia、Hydrothermal Synthesis、Growth Mechanisms、self-assembly、coagulation.
CHINESE ABSTRACT II
ENGLISH ABSTRACT III
Table of Contents IV
List of Figures VI
List of Tables XII
List of Symbols XIII
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Purpose of This Study 2
Chapter 2 Literature Review 3
2.0 Basic Properties and Applications of Zirconia 3
2.1 Hydrothermal Synthesis of Zirconia Sols 5
2.2 Hydrothermal synthesis of zirconia sols 7
2.3 Chemistry of aqueous zirconyl salt solutions 7
2.4 Primary and secondary particle formation 12
2.5 Growth Mechanism of zirconium oxychloride solutions 19
2.6 Field-Emission Transmission Electron Microscopy 20
Chapter 3 Experimental 23
3.0 Materials 23
3.1 Sampling System 24
3.2 Labview Programming 24
3.3 Software Architecture 25
3.4 Monitoring sol particle size by DLS 26
3.5 Particle Characterization by FE-SEM 28
3.6 Particle Separate by High-speed Refrigerated Centrifuge 28
Chapter 4 Results and Discussion 29
4.0 Introduction 29
4.1 DLS Growth Curves 29
4.1.1 DLS Growth Curves of 0.05M ZC and 0.05M ZC* 29
4.1.2 DLS Growth Curves and Histograms of 0.2M ZC and 0.2M ZC* 31
4.2 Growth of Zirconia Sols from 0.05M ZC 32
4.2.1 DLS Analysis 32
4.2.2 FESEM Analysis 38
4.2.3 Intra-particle Growth in D-direction 47
4.2.4 Intra-particle Growth in L-Direction 52
4.2.5 Proposed Intraparticle Growth Model for 0.05M ZC 62
4.3 Growth of Zirconia Sols from 0.05M ZC* 62
4.3.1 DLS Analysis 62
4.3.2 FESEM Analysis 66
4.3.3 Intra-particle Growth in D-Direction 73
4.3.4 Intra-particle Growth in L-Direction 76
4.3.5 Proposed Intraparticle Growth Model for 0.05M ZC* 81
4.4 Growth of Zirconia sols prepared from 0.2M ZC 82
4.4.1 DLS Growth Curves 82
4.4.2 FE-SEM Analysis 86
4.4.3 Intra-particle Growth in D-Direction 86
4.4.4 Intra-particle Growth in L-Direction 96
4.4.5 Proposed Intraparticle Growth Model for 0.2M ZC 96
4.5 Growth of Zirconia Sols from 0.2M ZC* 102
4.5.1 DLS Analysis 102
4.5.2 FE-SEM Analysis 105
4.5.3 Intra-particle Growth in D-Direction 105
4.5.4 Intraparticle Growth in L-Direction 114
4.5.5 Proposed Intraparticle Growth Model for 0.2M ZC* 119
4.6 Summary 120
4.6.1 Growth Mechanism for 0.05M ZC and 0.05M ZC* 121
4.6.2 Growth Mechanisms for 0.2M ZC and 0.2M ZC* 123
Chapter 5 CONCLUSIONS 125
1.Huang, Y.X. and Guo, C.J., “Synthesis of Nanosized Zirconia Particles Via Urea Hydrolysis,” Powder Technology, 72, 101(1992).
2.Piconi, C. and Maccauro, G., “Zirconia as A Ceramic Biomaterial,” Biomaterials, 20, 1 (1999).
3.Lughi, V. and Sergo, V., “Low Temperature Degradation -Aging- of Zirconia: A Critical Review Of The Relevant Aspects In Dentistry,” Dental Materials, 26, 807(2010).
4.Subbarao, E.C., Zirconia-an, overview. In: Heuer, A. and Hobbs, L. editors. Advances in ceramics, 3. Science and Technology of Zirconia, Amsterdam: Elsevier, 1 (1981).
5.Hu , Michael, Z.-C., Harris, M. T. and Byers, C. H., “Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis,” Journal of Colloidal and Interface Science, 198, 87(1998).
6.Chen, H., Zhang, Y. and Ding, C., “Tribological Properties of Nanostructured Zirconia Coatings Deposited by Plasma Spraying,” Wear, 253, 885 (2002).
7.Weppner, W. “Tetragonal Zirconia Polycrystals-A High Performance Solid Oxygen Ion Conductor,” Solid State Ionic, 52, 15 (1992).
8.Herlin, N., Armand, X., Musset, E., Martinengo, H., Luce, M. and Cauchetier, M.,“ Nanometric Si-Based Oxide Powders: Synthesis by Laser Spray Pyrolysis and Characterization,” Journal of the European Ceramic Society, 16, 1063 (1996).
9.Suchanek, W. and Riman, R., “Hydrothermal Synthesis of Advanced Ceramic Powders,” Advances in Science and Technology, 45, 184 (2006).
10.Somiya, S. and Roy, R., “Hydrothermal Synthesis of Fine Oxide Powders,” Bulletin of Materials Science, 23, 453 (2000).
11.Schubert, U. and Hüsing, N., Synthesis of Inorganic Materials, Willy-VCH, Weinheim (2005).
12.Brinker, C.J. and Scherer, G.W, Sol-Gel Science - The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York (1990).
13.Clearfield, A. and Vaughan, P.A., “The Crystal Structure of Zirconyl Chloride Octahydrate and Zirconyl Bromide Octahydrate,” Acta Crystallographica, 9, 555 (1956).
14.Muha, G. M. and Vaughan, P. A., “Structure of the Complex Ion in Aqueous Solution of Zirconyl and Hafnyl Oxyhalide,” The Journal of Chemical Physics, 33, 194 (1960).
15.Toth, L.M., Lin, J.S. and Felker, L.K., “Small-Angle X-ray Scattering from Zirconium (IV) Hydrous Tetramers,” The Journal of Physical Chemistry, 95, 3106(1991).
16.Singhal, A., Toth, L.M., Lin, J.S. and Affholter, K., “Zirconium(IV) Tetramer/Octamer Hydrolysis Equilibrium in Aqueous Hydrochloric Acid Solution,” Journal of the American Chemical Society, 118, 11529 (1996).
17.Matsui, K., Suzuki, H. and Ohgai, M., “Raman Spectroscopic Studies on the Formation Mechanism of Hydrous-Zirconia Fine Particles,” Journal of the American Ceramic Society, 78, 146 (1995).
18.Matsui, K. and Ohgai, M., “Formation Mechanism of Hydrous-Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions,” Journal of the American Ceramic Society, 80, 1949 (1997).
19.Matsui, K. and Ohgai, M., “Formation Mechanism of Hydrous-Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions: II,” Journal of the American Ceramic Society, 83, 1386 (2000).
20.Matsui, K. and Ohgai, M. “Formation Mechanism of Hydrous Zirconia Particles Produced by the Hydrolysis of ZrOCl2 Solutions: III, Kinetics Study for the Nucleation and Crystal-Growth Processes of Primary Particles,” Journal of the American Ceramic Society, 84, 2303(2001).
21.Matsui, K. and Ohgai, M., “Formation Mechanism of Hydrous Zirconia Particles Produced by the Hydrolysis of ZrOCl2 Solutions: IV, Effects of ZrOCl2 Concentration and Reaction Temperature,” Journal of the American Ceramic Society, 85, 545(2002).
22.Hu, Michael, Z.-C., Harris, M. T. and Byers, C. H., “Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis,” Journal of Colloidal and Interface Science, 198, 87(1998).
23.Hu, Michael Z.-C., Hunt, R.D.., Payzant, E.A. and Hubbard, C.R., “Nanocrystallization and Phase Transformation in Monodispersed Ultrafine Zirconia Particles from Various Homogenous Precipitation Methods,” Journal of the American Ceramic Society, 82, 2313(1999).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top