跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱品丰
研究生(外文):Pin-Feng Chiu
論文名稱:基因轉錄調控網路於人類鱗狀肺癌之研究
論文名稱(外文):Identifying cooperative transcription factors for a group of co-regulated genes in squamous cell lung cancer
指導教授:李宗夷
口試委員:翁資雅吳立青
口試日期:2012-6-28
學位類別:碩士
校院名稱:元智大學
系所名稱:生物與醫學資訊碩士學位學程
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:53
中文關鍵詞:轉錄因子共同調控鱗狀肺癌
外文關鍵詞:TFcooperativesquamous cell lung cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
直至民國九十九年,癌症為我國十大癌症死因之首,尤以肺癌為之最。其中,非小細胞癌的治療方式有所謂的標靶治療,標靶治療的原則是針對癌細胞的突變、增值或擴散的機制,阻斷癌細胞生長或修復的作用,或是抑制腫瘤血管新生,達到抑制癌細胞生長、促進癌細胞死亡、防止癌細胞擴散。因此,我們希望可以找到在人類鱗狀肺癌中,具有影響力的組合轉錄因子和被其調控的標靶基因。在本研究中,我們使用了Gene Expression Omnibus (GEO) 和Stanford Microarray Database (SMD) 這兩個資料庫所提供的基因晶片資料,並且利用TRANSFAC這個資料庫所提供的和轉錄因子相關的資料及Match這個工具。我們希望能夠用已知的和肺癌相關的轉錄因子(transcription factor, TF)和其會在一群啟動子(promoter)序列上共同出現 (co-occurrence) 的轉錄因子結合位置(transcription factor binding site, TFBS)來分析,用生物資訊的方式去找出有可能和該轉錄因子的轉錄因子結合位置成為組合的轉錄因子結合位置(combinatorial TFBSs),並且用了Match工具所提供的co-score和matrix-score以及兩個轉錄因子結合位置之間相距的距離當作過濾的條件,進而去找出可能會共同調控(cooperative)的其他轉錄因子。希望能將有關肺癌的基因調控網路建構的更加完整,或許就能使得標靶治療成功率更加提升。
Until the year 2010, cancer is the top one of ten leading cause of deaths, in which lung cancer is the most critical one. Target therapy is an effective method to cure non-small cell lung cancer. The idea of target therapy is using medicine to prevent from the mechanism of mutation, proliferation, and the extension to inhibit growth or repair of cancer cells. Target therapy also can repress tumor angiogenesis to reduce growth, enhance death, and avoid extension of cancer cells. Therefore, we want to find combinatorial TFs and their a group of target genes in human squamous cell lung cancer. In our research, we not only use microarray data from Gene Expression Omnibus (GEO) and Stanford Microarray Database (SMD) but also extract the information of transcription factors (TFs) and the TF binding site detection tool (Match) from TRANSFAC database. We develop a method to identify the known transcription factors related to lung cancer and the co-occurrence of transcription factor binding sites in a group of co-regulated genes. Moreover, we use co-score and matrix-score calculated by Match and the distance between combinatorial transcription factor binding sites as the detection constraints. This work can identify potential transcription factors that cooperate with known transcription factors in squamous cell lung cancer. The regulatory network of cooperative TFs can improve the success rate of target therapy in lung cancer.
書名頁 i
審定書 ii
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目 錄 vii
表 目 錄 ix
圖 目 錄 x
第一章 簡介 1
1.1 背景知識 2
1.1.1 基因轉錄 2
1.1.2 基因表現 3
1.1.3 轉錄起始位置、轉錄因子、轉錄因子結合位置 4
1.1.4 共同出現、組合的轉錄因子結合位置、共同調控 5
1.2 動機 6
1.3 目標 6
第二章 相關研究 7
2.1 IRF1與肺癌 7
2.2 定義共同出現的轉錄因子結合位置 7
2.2.1 TRANSFAC資料庫 7
第三章 資料與方法 9
3.1 資料 9
3.1.1 人類基因序列 9
3.1.1.1 基因序列長度選取 10
3.1.2 基因表現資料(Gene Expression Data) 10
3.1.3 已知的TFBS資料庫 12
3.1.4 基因和蛋白質功能資料庫 13
3.2 方法 13
3.2.1 系統流程 14
3.2.2 基因晶片分析工具(Tree View) 15
3.2.3 基因表現差異量 15
3.2.4 特定轉錄因子和基因的篩選 16
3.2.5 過濾標準 18
第四章 結果 19
4.1 Case Study 1 19
4.1.1 IRF1的20個targets 19
4.1.2 SP3的20個targets 20
4.1.3 IRF1的組合轉錄因子結合位置 20
4.1.4 SP3的組合轉錄因子結合位置 22
4.1.5 Down-regulated Group的GO統計 24
4.1.6 Up-regulated Group的GO統計 27
4.2 Case Study 2 30
4.2.1 統計三組晶片數量 31
4.2.2 GO - Biological Processes 32
4.2.2.1 Down-regulated Group 32
4.2.2.2 Up-regulated Group 35
4.3 Case Study 3 39
第五章 討論 42
5.1 用已知的TF和targets找出可能的組合 42
5.2 同時看三組晶片的分析 43
5.2.1 比較Case 1的TF和基因於三組晶片的值 43
5.2.2 利用GO ID對同一群的基因和TF做分析 46
第六章 結論與未來工作 49
參考文獻 51
1.Olaussen KA, Planchard D, Adam J, Soria JC: [DNA repair pathways and non-small cell lung cancer: clinical perspectives]. Bulletin du cancer 2011, 98(3):305-322.
2.Ciuleanu T, Stelmakh L, Cicenas S, Miliauskas S, Grigorescu AC, Hillenbach C, Johannsdottir HK, Klughammer B, Gonzalez EE: Efficacy and safety of erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study. The lancet oncology 2012, 13(3):300-308.
3.Sandomenico C, Costanzo R, Carillio G, Piccirillo MC, Montanino A, Di Maio M, Rocco G, Normanno N, Perrone F, Morabito A: Bevacizumab in non small cell lung cancer: development, current status and issues. Current medicinal chemistry 2012, 19(7):961-971.
4.Mityaev MV, Kopantzev EP, Buzdin AA, Vinogradova TV, Sverdlov ED: Enhancer element potentially involved in human survivin gene promoter regulation in lung cancer cell lines. Biochemistry Biokhimiia 2010, 75(2):182-191.
5.Johnson DS, Mortazavi A, Myers RM, Wold B: Genome-wide mapping of in vivo protein-DNA interactions. Science 2007, 316(5830):1497-1502.
6.Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM: Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome research 2006, 16(1):1-10.
7.Narlikar L, Ovcharenko I: Identifying regulatory elements in eukaryotic genomes. Briefings in functional genomics &; proteomics 2009, 8(4):215-230.
8.Ikehara M, Oshita F, Sekiyama A, Hamanaka N, Saito H, Yamada K, Noda K, Kameda Y, Miyagi Y: Genome-wide cDNA microarray screening to correlate gene expression profile with survival in patients with advanced lung cancer. Oncology reports 2004, 11(5):1041-1044.
9.Zhou X, Sumazin P, Rajbhandari P, Califano A: A systems biology approach to transcription factor binding site prediction. PloS one 2010, 5(3):e9878.
10.Yu X, Lin J, Masuda T, Esumi N, Zack DJ, Qian J: Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic acids research 2006, 34(3):917-927.
11.Chang WC, Lee TY, Huang HD, Huang HY, Pan RL: PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC genomics 2008, 9:561.
12.Veerla S, Ringner M, Hoglund M: Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs. BMC genomics 2010, 11:145.
13.Eason DD, Shepherd AT, Blanck G: Interferon regulatory factor 1 tryptophan 11 to arginine point mutation abolishes DNA binding. Biochimica et biophysica acta 1999, 1446(1-2):140-144.
14.Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E: MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic acids research 2003, 31(13):3576-3579.
15.Fernandez-Suarez XM, Schuster MK: Using the ensembl genome server to browse genomic sequence data. Current protocols in bioinformatics / editoral board, Andreas D Baxevanis [et al] 2010, Chapter 1:Unit1 15.
16.Boyle J: Gene-Expression Omnibus integration and clustering tools in SeqExpress. Bioinformatics 2005, 21(10):2550-2551.
17.Gollub J, Ball CA, Sherlock G: The Stanford Microarray Database: a user's guide. Methods Mol Biol 2006, 338:191-208.
18.Binns D, Dimmer E, Huntley R, Barrell D, O'Donovan C, Apweiler R: QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 2009, 25(22):3045-3046.
19.Zhai Y, Tchieu J, Saier MH, Jr.: A web-based Tree View (TV) program for the visualization of phylogenetic trees. Journal of molecular microbiology and biotechnology 2002, 4(1):69-70.
20.Skrzypski M, Jassem E, Taron M, Sanchez JJ, Mendez P, Rzyman W, Gulida G, Raz D, Jablons D, Provencio M et al: Three-gene expression signature predicts survival in early-stage squamous cell carcinoma of the lung. Clinical cancer research : an official journal of the American Association for Cancer Research 2008, 14(15):4794-4799.
21.Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, Yang P, Sun Z, Szoke J, Gerald WL, Watson M et al: A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS medicine 2006, 3(12):e467.
22.Horiuchi M, Itoh A, Pleasure D, Ozato K, Itoh T: Cooperative contributions of interferon regulatory factor 1 (IRF1) and IRF8 to interferon-gamma-mediated cytotoxic effects on oligodendroglial progenitor cells. Journal of neuroinflammation 2011, 8:8.
23.Galvagni F, Capo S, Oliviero S: Sp1 and Sp3 physically interact and co-operate with GABP for the activation of the utrophin promoter. Journal of molecular biology 2001, 306(5):985-996.
24.Beroud C, Verdier F, Soussi T: p53 gene mutation: software and database. Nucleic acids research 1996, 24(1):147-150.
25.Kao S, Shiau CK, Gu DL, Ho CM, Su WH, Chen CF, Lin CH, Jou YS: IGDB.NSCLC: integrated genomic database of non-small cell lung cancer. Nucleic acids research 2012, 40(Database issue):D972-977.
26.Wilson M, Koopman P: Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Current opinion in genetics &; development 2002, 12(4):441-446.
27.Vadlamudi U, Espinoza HM, Ganga M, Martin DM, Liu X, Engelhardt JF, Amendt BA: PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. Journal of cell science 2005, 118(Pt 6):1129-1137.
28.Huang W, Lu N, Eberspaecher H, De Crombrugghe B: A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. The Journal of biological chemistry 2002, 277(52):50668-50675.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top