|
参考文獻 1.Phelps, D.S., J. Floros, and H.W. Taeusch, Jr., Post-translational modification of the major human surfactant-associated proteins. Biochem J, 1986. 237(2): p. 373-7. 2.Krebs, E.G. and J.A. Beavo, Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem, 1979. 48: p. 923-59. 3.Mok, J., et al., Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci Signal, 2010. 3(109): p. ra12. 4.Blom, N., S. Gammeltoft, and S. Brunak, Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 1999. 294(5): p. 1351-62. 5.Blom, N., et al., Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004. 4(6): p. 1633-49. 6.Obenauer, J.C., L.C. Cantley, and M.B. Yaffe, Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res, 2003. 31(13): p. 3635-41. 7.Iakoucheva, L.M., et al., The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res, 2004. 32(3): p. 1037-49. 8.Kim, J.H., et al., Prediction of phosphorylation sites using SVMs. Bioinformatics, 2004. 20(17): p. 3179-84. 9.Zhou, F.F., et al., GPS: a novel group-based phosphorylation predicting and scoring method. Biochem Biophys Res Commun, 2004. 325(4): p. 1443-8. 10.Xue, Y., et al., GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res, 2005. 33(Web Server issue): p. W184-7. 11.Xue, Y., et al., GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics, 2008. 7(9): p. 1598-608. 12.Huang, H.D., et al., KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res, 2005. 33(Web Server issue): p. W226-9. 13.Burge, C. and S. Karlin, Prediction of complete gene structures in human genomic DNA. J Mol Biol, 1997. 268(1): p. 78-94. 14.Wu, X., et al., [Hidden Markov model used in protein sequence analysis]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2002. 19(3): p. 455-8. 15.Wong, Y.H., et al., KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res, 2007. 35(Web Server issue): p. W588-94. 16.Xue, Y., et al., PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinformatics, 2006. 7: p. 163. 17.Gnad, F., et al., PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol, 2007. 8(11): p. R250. 18.Wan, J., et al., Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucleic Acids Res, 2008. 36(4): p. e22. 19.Berry, E.A., A.R. Dalby, and Z.R. Yang, Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms. Comput Biol Chem, 2004. 28(1): p. 75-85. 20.Plewczynski, D., et al., AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics, 2005. 21(10): p. 2525-7. 21.Neuberger, G., G. Schneider, and F. Eisenhaber, pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model. Biol Direct, 2007. 2: p. 1. 22.Tang, Y.R., et al., GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Eng Des Sel, 2007. 20(8): p. 405-12. 23.Plewczynski, D., et al., AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. J Mol Model, 2008. 14(1): p. 69-76. 24.Dang, T.H., et al., Prediction of kinase-specific phosphorylation sites using conditional random fields. Bioinformatics, 2008. 24(24): p. 2857-64. 25.Li, T., F. Li, and X. Zhang, Prediction of kinase-specific phosphorylation sites with sequence features by a log-odds ratio approach. Proteins, 2008. 70(2): p. 404-14. 26.Jung, I., et al., PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship. BMC Bioinformatics, 2010. 11 Suppl 1: p. S10. 27.Safaei, J., et al., Prediction of 492 human protein kinase substrate specificities. Proteome Sci, 2011. 9 Suppl 1: p. S6. 28.Tan, C.S., et al., Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal, 2009. 2(81): p. ra39. 29.Yang, X., et al., Kinase inhibition-related adverse events predicted from in vitro kinome and clinical trial data. J Biomed Inform, 2010. 43(3): p. 376-84. 30.Dinkel, H., et al., Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res, 2011. 39(Database issue): p. D261-7. 31.Lee, T.Y., et al., RegPhos: a system to explore the protein kinase-substrate phosphorylation network in humans. Nucleic Acids Res, 2011. 39(Database issue): p. D777-87.
|