跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳國義
研究生(外文):Kuo-Yi Chen
論文名稱:以離散餘弦轉換為基礎之迭代反投影影像超解析研究
論文名稱(外文):DCT-based Iterative Back-projection Algorithm for Image Super-Resolution
指導教授:李錫捷李錫捷引用關係
指導教授(外文):Hsi-ChiehLee
口試委員:林熙禎陳金聖郭文嘉
口試委員(外文):Shi-JenLinChin-ShengChenWen-JiaKuo
口試日期:2012-6-28
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:影像超解析數位影像處理頻率域空間域離散餘弦轉換
外文關鍵詞:DCTSuper-ResolutionDigital Image ProcessingFrequencySpatial
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前在數位影像超解析度的研究中主要可以分成兩類,分別是以單一影像為基礎的解析度提升,以及使用多張影像作為參考的解析度提升,本研究的方法是採取單一影像作為解析度提升的方式在進行的。在本論文進行解析度提升的研究過程中,我們分別導入了數位影像處理中應用於頻率域以及空間域的處理技術,像是在進行影像初步的解析度放大過程中,我們使用了離散餘弦轉換所特有的低頻區能量緊密特性作為影像解析度提升上的再取樣基礎。而在得到了解析度經過初步放大後的初始高解析度影像後,為了針對影像在經過頻率域處理後可能會產生的混疊效應以及使用低頻資訊作放大後所特有的高頻遺失效應,我們另外使用空間域上的技術來對影像作混疊修補及高頻補償的處理。如此一來,影像在經過頻率域的低頻放大以及空間域的高頻補償後,便能夠得到一幅高品質的高解析度影像作為輸出。本論文所提出的演算法不論是在肉眼的主觀認知上,或是鋒值訊噪比的評比數值上,均比常見的使用多項式插補作解析度放大的演算法的結果還要來得有更好的視覺效果以及顯著的評比數據的提升。
There are two main approach of the image super-resolution research in digital
image processing. one is based on the single image, and the other is used by multiple
images which inter-reference each other. In the two different approaches, this paper
is belong to the first one. In our research approach, we use the frequency and spatial
domain methodologies of digital image processing respectively. The first step to get
the initial high resolution image is through the energy compaction characteristics of
Discrete Cosine Transform. Though we may get some extra side effects such like
aliasing and high-frequency losing in those images by using the frequency domain
transform technic, hence we then use the spatial domain processing technics for
dealing with those side effects and at the same time doing high-frequency feedbacks
synchronically. After this ways of the second step processing that image passes
through the low-frequency resampling and high-frequency feedbacks, we shall and
will get a high quality and high resolution image as our approach output. The super-
resolution algorithm we proposed in this paper can clearly find not only the subjective
viewing quality, but also the objective value of PSNR results a satisfied improvement.
Finally, the approach of ours exactly have a good improvement from the existing
interpolation algorithm like Bicubic.
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 全文架構 3
第二章 影像超解析度文獻探討 4
2.1 數位影像處理的領域 4
2.2 影像觀察模型 4
2.3 文獻回顧 6
2.3.1 多項式插補的方法 6
2.3.2 頻率域上求解的方法 9
2.3.3 機率統計的方法 10
2.3.4 迭代法 11
2.3.5 混合型方法 12
第三章 影像超解析度相關演算法 13
3.1 多項式內插填補演算法 13
3.1.1 最近鄰域插補 13
3.1.2 雙線性插補 14
3.1.3 雙立方插補 15
3.2 頻率域的影像處理技術 16
3.2.1 快速傅立葉轉換 16
3.2.2 離散餘弦轉換 17
3.3 空間域演算法介紹 19
3.3.1 空間濾波器原理 19
3.3.2 邊緣偵測原理 20
3.3.3 Canny 演算法 21
3.3.4 拉普拉斯演算法 22
3.3.5 高斯函數平滑濾波 23
3.4 色彩空間的轉換 25
3.4.1 RGB色彩空間 25
3.4.2 YCbCr色彩空間 27
3.5 影像品質評比 28
3.5.1 PSNR 28
3.5.2 SSIM 29
第四章 離散餘弦轉換搭配迭代反投影之超解析演算法 30
4.1 演算法流程 30
4.2 色彩空間的轉換處理 33
4.3 影像於頻率域的再取樣 34
4.4 影像邊緣的修補處理 38
4.4.1 低通濾波後的失真效應 38
4.4.2 直線邊緣的失真效應 39
4.4.3 邊緣方向偵測 40
4.4.4 邊緣線段的遍歷 41
4.5 影像迭代反投影 44
4.5.1 條件假設 44
4.5.2 演算法程序 45
4.5.3 高斯濾波器的設計 48
第五章 實驗結果與討論 49
5.1 實驗流程 49
5.2 實驗結果與討論 50
5.2.1 在不同轉換尺度下透過DCT於頻率域作放大的結果 50
5.2.2 使用DCT低頻係數在頻率域作放大的結果 54
5.2.3 執行影像邊緣最大遍歷演算法後的結果 57
5.2.4 初始HR影像在空間域使用IBP運算後的結果 62
5.2.5 本論文演算法作放大處理的最後結果 64
5.2.6 實驗影像放大4倍的結果 76
5.2.7 實驗影像放大8倍的結果 85
5.3 實驗耗費時間的差異討論 94
第六章 結論 97
6.1 研究成果 97
6.2 研究限制 98
6.3 未來展望 98
參考文獻 99
[1] S. C. Park, M. K. Park, and M. G. Kang., “Super-resolution image reconstruction: a technical
overview”, IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21–36, May 2003.
[2] Gonzalez Woods, “數位影像處理”, 普林斯頓國際有限公司, 2004年
[3] W. K. Pratt, Digital Image Processing, 2nd edition. New York: Wiley, 1991.
[4] S. Battiato, G. Gallo, M. Mancuso, G. Messina, and F. Stanco, ” Analysis and Characterization of
Super-Resolution Reconstruction ”, in Proc. SPIE Conf. 2003
[5] C. Papathanassiou, and M. Petrou, “Super resolution: an overview”, IGARSS '05. Proceedings.
2005 IEEE International , Vol. 8, pp.5655–5658, July 2005
[6] S. Baker, and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, p.1167, 2002.
[7] A. V. Oppenheim, and R. W. Schafer, “Discrete-Time Signal Processing, Prentice Hall, pp.
140-210, 1999.
[8] J.V. VEGTE, “Fundamentals of Digital Signal Processing,” New Jersey:Prentice Hall, 2001.
[9] M. Unser, A. Aldroubi, and M. Eden, “B-Spline Signal Processing: Part II-Efficient Design and
Applications,” IEEE Trans. Signal Processing, vol. 41, pp. 834-848, Feb. 1993. 
[10] E.H.W. Meijering, K.J. Zuiderveld, and M.A. Viergever, “Image Reconstruction by Convolution
with Symmetrical Piecewise nth-Order Polynomial Kernels”, IEEE Trans. on Image Processing,
vol. 8, pp. 192-201, Feb. 1999.
[11] T.M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image
processing,” IEEE Trans. Medical Imaging, vol. 18, no. 11, pp. 1049-1075, Nov. 1999.
[12] K. Turkowski, “Filters for common resampling tasks,” Apple Computer, April 1990.
[13] 劉鴻明, 蔡孟達, 張元翔, “應用於影像縮放技術之內插法評估研究”, 中原大學
資訊工程學系
[14] 林榮朗, “動態及靜態影像放大之研究”, 國立成功大學, 資訊工程所碩士論文, 2002年
[15] 劉鴻明, “A Study of Image Interpolation Methods Based on Splines”, 中原大學資訊
工程所碩士論文, 2005年
[16] R.G. Keys, “Cubic Convolution Interpolation for Digital Image Processing”, IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 6, pp. 1153-1160, Dec. 1981.
[17] H.H. Hou, and H.C. Andrews, "Cubic splines for image interpolation and digital filtering", IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-26, no. 6, pp.508 - 517 , 1978.
[18] M. Lehmann, G. Claudia, and S. Klaus, “Addendum: B-spline Interpolation in Medical Image
Processing”, IEEE Trans. on Medical Image, vol. 20, pp. 660-665, July 2001.
[19] 王隆仁, “A fast Cubic-Spline Interpolation and its Application”, 國立中山大學,
資訊工程研究所博士論文, 2001年
[20] M. Unser, ”Spline: A Perfect Fit for Signal and Image Processing”, IEEE Signal Processing
Magazine, pp. 22-38, Nov. 1999.
[21] P. H. Chang, J.J. Leou, and H.C. Hsieh, “A genetic algorithm approach to image sequence
interpolation,” Signal Processing: Image Communication, vol. 16, pp. 507-520, 2001.
[22] W. T. Freeman, T. R. Jones, and E.C. Pasztor, “Example-based super-resolution”, mitsubishi
electric research laboratories, TR2001-30 December 2001
[23] 蕭傳楷, “藉由大量樣本強化影像解析度”, 國立台灣大學, 資訊工程研究所碩士論文,
2008年。
[24] R. R. Schultz, and R. L. Stevenson, ”A Bayesian Approach to Image Expansion for Improved
definition”, IEEE Trans. Image Processing, vol. 3, pp. 233-242, May 1994.
[25] L. Chulhee, E. Murray, and M. Unser, “High-Quality Image Resizing Using Oblique Projection
Operators”, IEEE Trans. on Image Processing, vol. 7, pp. 679-692, May 1998.
[26] R. Giovanni, “Warped Distance for Space-Variant Linear Image Interpolation”, IEEE Trans. on
Image Processing, vol. 8, pp. 629-639, May 1999.
[27] H.C. Ting, and H.M. Hang, “Edge Preserving Interpolation of Digital Image Using
Fuzzy Inference”, JVCIR, vol. 8, pp.338-355, Dec. 1997.
[28] J.G. Leu, “Image Enlargement Based on a Step Edge Model”, Pattern Recognition, pp.
2055-2073, 2000.
[29] L. Xin, and M.T. Orchard, “New Edge-Directed Interpolation”, IEEE Trans on Image Processing,
vol. 10, pp. 1521-1527, Oct. 2001.
[30] 謝東成, “保留邊緣特性之影像放大方法”, 國立台灣科技大學, 電機工程所碩士論文,
2006年
[31] S. Ali Khayam, “The Discrete Cosine Transform (DCT): Theory and Application”.
ECE 802– 602: Information Theory and Coding, March 10th 2003.
[32] G. Hayit, C.H. Anderson, and S. Akber, “Image Enhancement by Nonlinear Extrapolation in
Frequency Space”, IEEE Trans. On Image Processing, vol. 9, no. 6, June 2000.
[33] B. Murat, E. Misha Kilmer, and E.L. Miller, “Wavelet Domain Image Restoration with Adaptive
Edge-Preserving Regularization”, IEEE Trans. On Image Processing, vol. 9, no. 4, Apr. 2000.
[34] S.P. Kim, N.K. Bose, and H.M. Valenzuela, “Recursive reconstruction of high resolution image
from noisy undersampled multiframes” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol.38,no.6,pp.1013-1027 1990
[35] S. P. Kim, and W. Y. Su, “Recursive high-resolution reconstruction of blurred multiframe images”
IEEE Transactions on Image Processing, vol. 2. pp. 534-5539,
[36] S. H. Rhee, and M. G. Kang, “Discrete cosine transform based regularized high-resolution image
reconstruction algorithm” Optical Engineering, vol. 38, no. 8, pp. 1348-1356, August 1999.
[37] 張宸瑋, “高效率影像視訊超解析度方法”, 國立台灣大學, 資訊工程研究所碩士論文,
2008年
[38] R. R. Schultz, and R. L. Stevenson, “A Bayesian approach to image expansion for improved
definition,” IEEE Transactions on Image Processing, vol. 3, pp. 233-242, May 1994.
[39] R. R. Schultz, and R. L. Stevenson, “Improved definition video frames from video sequence,”
Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 4, pp. 2169-2171, May 1995.
[40] R. R. Schultz, and R. L. Stevenson, “Extraction of high-resolution frame from video sequence,”
IEEE Transactions on Image Processing, vol. 5, pp. 996-1011, June 1996.
[41] R. R. Schultz, L. Meng, and R. L. Stevenson, “Subpixel motion estimation for super-resolution
image sequence enhancement,” Journal of Visual Communication and Image Representation,
vol. 9, no. 1, pp. 38-50, Mar. 1998.
[42] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Fast and Robust Super-Resolution” Image
Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference, Vol. 2, pp.II - 291-4.
Vol.3, Sept. 2003
[43] A. Katartzis, and M. Petrou. “Robust Bayesian Estimation and Normalized Convolution for
Super-resolution Image Reconstruction.” IEEE Computer Vision and Pattern Recognition
(CVPR), 2007:1-7.
[44] J. Patti, M. I. Sezan, and A. M. Tekalp, “Superresolution video reconstruction with arbitrary
sampling lattices and nonzero aperture time,” IEEE Transactions on Image Processing, vol. 6,
no. 8, pp. 1064-1076, Aug. 1997.
[45] V. Patanavijit, and S. Jitapunkul, “An Iterative Super-Resolution Reconstruction of Image
Sequences using Fast Affine Block-Based Registration with BTV Regularization” Circuits and
Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference, pp.1717–1720, Dec. 2006
[46] H. Greenspan, G. Oz, N. Kiryati, and S. Peled, “Super-resolution in MRI” Biomedical Imaging,
2002. Proceedings. 2002 IEEE International Symposium on, pp. 943-946, 2002.
[47] G. Messina, S. Battiato, M. Mancuso, and A. Buemi, “ Improving image resolution by adaptive
back-projection correction techniques” IEEE Transactions on Consumer Electronics, Vol.48,
Issue: 3, pp.409-416, August 2002
[48] L. Feng, F. Donald, and J. Xiuping, “Efficient IBP with super resolution for ALOS imagery, ”
Unpublished manuscript. July, 2007
[49] S. Dai, M. Han, Y. Wu, amd Y. Gong, “Bilateral Back-Projection for Single Image Super
Resolution”, Multimedia and Expo, 2007 IEEE International Conference, pp.1039-1042, July
2007
[50] 張書樊,“運用高頻資訊補償之超解析度演算法研究”,國立中央大學,
通訊工程研究所碩士論文, 2007年
[51] 黃一民,“超解析技術應用於影像序列放大之研究”,國立成功大學
資訊工程研究所碩士論文, 2003年
[52] Philippe Colantoni, and Al, “Color Space Transformations,” http://www.couleur.org/, 2004.
[53] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between images”,
IEEE Computer Graphics and Applications vol. 21, no. 5, pp. 34-41
[54] Y. Altunbasak, A. Patti, and R. Mersereau, “Super-resolution still and video reconstruction from
mpeg-coded video,” IEEE Trans. Circuits Syst. Video Technol., Vol. 12, no. 4, pp. 217–226, Apr.
2002.
[55] 張富貴, “減低監控專用視訊壓縮系統之方塊效應”,國立成功大學,電機工程所碩士論文,
2002年
[56] 解昇維,“VC-1解碼器於PAC DSP3.0之實作研究”, 國立成功大學, 電腦與通信工程研究所
碩士論文, 2007年
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊