跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱俞鳴
研究生(外文):Yu-Ming Chiu
論文名稱:強健的視頻拷貝檢測基於特徵點匹配和稀疏編碼
論文名稱(外文):Visual Attention Guided Video Copy Detection based on Feature Points Matching with Geometric-Constraint Measurement and Sparse Coding
指導教授:陳敦裕陳敦裕引用關係
指導教授(外文):Duan-YuChen
口試委員:康立威魏志達
口試日期:2012-6-6
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:27
中文關鍵詞:視頻拷貝檢測稀疏編碼
外文關鍵詞:Video Copy DetectionlSparse Coding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
視頻拷貝檢測技術大多都使用特徵點的資訊去做匹配,但如何快速又準確的匹配依然是一個很大的議題.本論文使用一個相當熱門的稀疏編碼技術,把序列中的每張圖經由稀疏特徵編碼,然後訓練出能代表整張圖特徵的字典,再以序列對字典的描述進行的匹配,最後得到的係數在做最後的相似度計算.實驗的結果,大大減少以往的特徵點匹配所需的運算時間,再對各類的攻擊下依然有高準確率,證明了使用稀疏編碼對視頻拷貝的可行性.
In this thesis, to efficiently detect video copies, focus of interests in videos is first localized based on 3D spatiotemporal visual attention modeling. Salient feature points are then detected in visual attention regions. Prior to evaluate similarity between source and target video sequences using feature points, geometric constraint measurement is employed for conducting bi-directional point matching in order to remove noisy feature points and simultaneously maintain robust feature point pairs. Consequently, video matching is transformed to frame-based time-series linear search problem. In addition, for performance comparison, sparse coding is selected to learn representative dictionary for measuring similarity between video sequences. Our proposed approach achieves promising high detection rate under distinct video copy attacks and thus shows its feasibility in real-world applications.
List of Figures 4
List of Table 5
Chapter 1.Introduction 6
Part Ⅰ 9
Chapter 2.Visual Attention Modeling 9
2.1.Detection of spatiotemporal salient points 9
2.2.Motion Attention Map 11
2.3.Visual Attention Modeling 12
Chapter 3.Geometric-Constraint Feature Points Measurement13
Chapter 4.Video Similarity Measurement 14
Part Ⅱ 15
Chapter 5.Proposed Feature-Based Sparse Representation For Video Similarity Assessment Methodology 15
5.1.Dictionary Feature Extraction 15
5.2.Sparse Representation-Based Video Similarity
Assessment 17
Chapter 6.Hough transform correction 18
Chapter 7.Experimental results 20
Chapter 8.Conclusion 24
References 24
[1]S. Li and M. C. Lee, “An Efficient Spatiotemporal Attention Model and Its Application to Shot Matching,” IEEE Trans. on Circuits and Systems for Video Technology, Vol.17, No.10, pp. 1383-1387, Oct. 2007.
[2]Y. F. Ma, L. Lu, H. J. Zhang, and M. Li, “A User Attention Model for Video Summarization,” Proc. ACM Multimedia, pp.533-541, Dec. 2002.
[3]Y. Zhai and M. Shah, “Visual Attention Detection in Video Sequences Using Spatiotemporal Cues,” Proc. ACM Multimedia, pp.815-824, Oct. 2006.
[4]L. Laptev and T. Lindeberg, “Space-Time Interest Points,” Proc. IEEE International Conference on Computer Vision, pp.432-439, Oct. 2003.
[5]L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual Attention for Rapid Scene Analysis,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.20, No.11, pp.1254-1259, 1998.
[6]C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” In Alvey Vision Conference, pp. 147-151, 1988.
[7]V. Navalpakkam, and L. Itti, “An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed,” Proc. IEEE CVPR, Vol.2, pp. 2049-2056, 2006.
[8]L. Itti, and C. Koch, “Computational Modeling of Visual Attention,” Neuroscience, Vol.2, pp. 1-11, 2001.
[9]B. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” Proc. International Joint Conference on Artificial Intelligence, pp. 674-679, 1981.
[10]W. James. The Principles of Psychology, Harvard Univ. Press, Cambridge, Massachusetts, 1980/1981.
[11]C. C. Shih, H. R. Tyan and H. Y. Mark Liao, “Shot Change Detection based on the Reynolds Transport Theorem”, Proc. Second IEEE Pacific Rim Conference on Multimedia, Oct.24-26, Beijing, China, LNCS 2195, pp.819-824, 2001.
[12]C. W. Su, H. Y. Mark Liao, H. R.Tyan, K. C. Fan, and L.-H. Chen, “A Motion-Tolerant Dissolve Detection Algorithm” IEEE Trans. on Multimedia, Vol.7, No.6, December 2005.
[13]C. Y. Chiu and H. M. Wang, “Time-Series Linear Search for Video Copies Based on Compact Signature Manipulation and Containment Relation Modeling,” IEEE Transactions on Circuits and Systems for Video Technology, No. 5604280 , pp. 1603-1613, 2010.
[14]D. Y. Chen “Modelling salient visual dynamics in videos,” Multimedia Tools and Applications, pp. 271–284, 2011.
[15]TRECVID 2010 Guidelines,
http://www-nlpir.nist.gov/projects/tv2010/tv2010.html#ccd
[16]X. Guo and X. Cao “Triangle-Constraint for Finding More Good Features,” International Conference on Pattern Recognition, No. 5597550 , pp. 1393-1396, 2010.
[17]H. Bay, T. Tuytelaars, and L. Van Gool, “Surf:speeded up robust features,” In Lecture Notes in Computer Science, pp. 404–417, 2006.
[18]M. Brown and D. Lowe, “Recognising panoramas,” IEEE International Conference on Computer Vision, pp. 1218–1227, 2003.
[19]C. Harris and M. J. Stephens, “A combined corner and edge detector,” Alvey Vision Conference, volume 20, pp. 147–152, 1988.
[20]H. Jiang and S. Yu, “Linear solution to scale and rotation invariant object matching,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 2474–2481, 2009.
[21]S. Lee and Y. Liu, “Curved glide-reflection symmetry detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1046–1053, 2009.
[22]M. Leordeanu and M. Hebert, “A spectral technique for correspondence problems using pairwise constraints,” IEEE International Conference on Computer Vision, pp. 1482–1489, 2005.
[23]D. Lowe, “Distinctive image features from scale-invariant Keypoints,” International Journal of Computer Vision, pp. 91–110, 2004.
[24]J. Rabin, J. Delon, and Y. Gousseau, “Circular earth mover’s distance for the comparison of local features,” International Conference on Pattern Recognition, pp. 1–4, 2008.
[25]T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affine invariant regions,” International Journal of Computer Vision, pp. 61–85, 2004.
[26]S. Zhang, Q. Tian, G. Hua, Q. Huang, and S. Li, “Descriptive visual words and visual phrases for image applications,” Proc. ACM Int’l Conf. Multimedia, pp. 75-84, Beijing, China, Oct.19-24,2009.
[27]M. Aharon, M. Elad, and A. M. Bruckstein, “The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.
[28]S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415,Dec. 1993.
[29]S. Wang, L. Cui, D. Liu, R. Huck, P. Verma, J. J. Sluss, S. Cheng, “Vehicle Identification via Sparse Representation,” Intelligent Transportation Systems, pp. 955-962, 2011.
[30]L. W. Kang, C. Y. Hsu, H. W. Chen, C. S. Lu, C. Y. Lin, and S. C. Pei, “Feature-Based Sparse Representation for Image Similarity Assessment,” IEEE Trans. on Multimedia, volume 13, number 5, pp. 1019-1030, October 2011.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top