跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 19:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪博文
研究生(外文):Bo-Wen Hong
論文名稱:智慧型控制理論之機器人定位系統開發
論文名稱(外文):The development of Robot Positioning System with Intelligent Control
指導教授:黃英哲黃英哲引用關係
指導教授(外文):Ying-JehHuang
口試委員:郭姿君李仲溪彭椏富韓國璋許駿飛
口試委員(外文):Tzu-ChunKuoJunghsiLeeYa-FuPengGuo-ZhangHanChun-FeiHsu
口試日期:2012-7-5
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:100
語文別:英文
論文頁數:76
中文關鍵詞:無線射頻辨識系統室內即時定位影像辨識模糊類神經網路智慧型機器人
外文關鍵詞:Radio frequency identification systemReal-time indoor positioningImage processingFuzzy neural networkIntelligent Robot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,無線射頻與影像處理系統技術被廣泛應用於智慧住宅與大型醫療院所建置之整合的室內即時定位系統。本文提出新的具影像辨識與模糊類神經網路之RFID室內定位架構系統,解決智慧型機器人之室內即時定位問題,該方法建立於系統之接收訊號強度判斷基礎上,系統架構採用2.4GHz主動式RFID元件,該系統具備讀寫器與標籤的長距離傳輸優點,以及搭配模糊類神經網路控制器的強健性與適應性,並於範圍面積大的室內進行定位,在此將提出的影像辨識搭配模糊類神經RFID方法用以解決一系列的智慧型機器人之室內即時定位問題,研究工作建構於兩種架構上,透過實驗結果成功的表現可以得知該系統具有很好的精確度以及具備適應性,在此可以提供智慧型充電機器人與家庭保健輪椅機器人定位與導航的方式,該架構同時可以降低系統成本與減少系統運算複雜性。
In recent years, Radio Frequency Identification system (RFID) and image processing system technology has been widely applied to intelligent houses and large medical institutions to build real-time positioning system. This dissertation proposes a fuzzy neural network based on image processing system for real time navigating and RFID indoor positioning the intelligent robots. The technology is based on received signal strength indication method. The proposed system structure includes 2.4GHz active RFID devices and camera. Since active RFID devices have a prominent capability on long distance communication, it is the reason why we apply to the localization for a intelligent mobile robot. The fuzzy neural network controller provides robustness and adaptive rule for environment. Further, we solve the problem of real-time indoor positioning for intelligent robot with RFID-based fuzzy neural network. In our research work, two structures developed the successful experiment results show that the proposed system architecture and positioning system provides very good accuracy. In the meantime, it makes intelligent self-charging robot and home health care wheelchair robot positioning system available for navigation and guidance. The proposed indoor localization system also has two advantages of cost reduction and simple computation.
論文口試委員審定書 i
授權書 i
中文摘要 i
英文摘要 ii
Acknowledgement i
Contents ii
List of tables iv
List of figures v
Chapter 1 Introduction 7
1.1 Motivation 7
1.2 Literature review 7
1.3 The framework of dissertation 11
Chapter 2 Framework of omni-directional mobile robot 12
2.1 Overview 12
2.2 Hardware components 13
2.3 Motion control 17
2.4 Conclusions 19
Chapter 3 Wireless localization technique base on fuzzy neural network 20
3.1 Overview 20
3.2 Wireless localization technique 20
3.3 Fuzzy neural network structure 30
3.4 Conclusions 36
Chapter 4 Experimental result 37
4.1 Overview 37
4.2 RSSI correspond to distance database construction 38
4.3 RSSI of localization measurement experiment 38
4.4 Moving localization measurement experiment 39
4.5 Fuzzy neural network based RFID positioning and navigation method for mobile robots 40
4.6 Adaptive RFID indoor positioning technology for wheelchair home health care robot 55
4.7 Conclusions 68
Chapter 5 Conclusions 70
References 72
[1]G. Zecca, P. Couderc, M. Banâtre, and R. Beraldi, “A swarm of robots using RFID tags for synchronization and cooperation,” International Journal of Intelligent Computing and Cybernetics, vol. 2, no. 4, pp. 846-869, 2009.
[2]M. Mühlig, M. Gienger, and J. J. Steil, “Human-robot interaction for learning and adaptation of object movements,” IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, pp. 4901-4907, 2010.
[3]R. A. Cooper, B. E. Dicianno, B. Brewer, E. LoPresti, D. Ding, R. Simpson, G. Grindle, and H. Wang, “A perspective on Intelligent Devices and Environments In Medical Rehabilitation,” Medical Engineering &; Physics, vol. 30, no. 10, pp. 1387-1398, 2008.
[4]L. Vachhani and K. Sridharan, “Hardware-Efficient Prediction-Correction-Based Generalized-Voronoi-Diagram Construction and FPGA Implementation,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1558-1569, 2008.
[5]Y. Misono, Y. Goto, Y. Tarutoko, K. Kobayashi, and K. Watanabe, “Development of Laser Rangefinder-based SLAM Algorithm for Mobile Robot Navigation,” SICE Annual Conference, pp. 329-396, 2007.
[6]W. C. Celeste, T. F. Bastos Filho, M. S. Filho, and R. Carelli, “Dynamic Model and Control Structure for an Autonomous Wheelchair,” IEEE International Symposium on Industrial Electronics, pp. 1359-1364, 2008.
[7]D. I. B. Randeniya, S. Sarkar, and M. Gunaratne, “Vision–IMU Integration Using a Slow-Frame-Rate Monocular Vision System in an Actual Roadway Setting,” IEEE Transactions on Intelligent Transportation Systems, vol.11, no. 2, pp. 256-266, 2010.
[8]D. Bank and T. Kämpke, “High-Resolution Ultrasonic Environment Imaging,” IEEE Transactions on Robotics, vol. 23, no. 2, pp. 370-381, 2007.
[9]A. S. Sekmen, M. Wilkes, and K. Kawamura, “An Application of Passive Human-Robot Interaction: Human Tracking Based on Attention Distraction,” IEEE Transactions on Systems Man and Cybernetics Part A, vol. 32, no. 2, pp. 248-259, 2002.
[10]A. Ali, L. A. Latiff, and N. Fisal, “GPS-free Indoor Location Tracking in Mobile Ad Hoc Network (MANET) Using RSSI,” RF and Microwave Conference, pp. 251-255, 2004.
[11]M. N. Lionel, Y. Liu, Y. C. Lau, and A. P. Patil, “LANDMARC: Indoor Location Sensing Using Active RFID,” IEEE International Conference on Pervasive Computing and Communications, pp. 407-415, 2004.
[12]K. Finkenzeller, RFID Handbook: Fundamentals an Applications in Contactless Smart Cards and Identification. John Wiley &; Sons, Inc., New York, 2003.
[13]D. M. Dobkin and T. Wandinger, “A Radio-oriented Introduction to Radio Frequency Identification,” High Frequency Electronics, vol. 4, no. 6, pp. 46-54, 2005.
[14]C. C. Chao, J. M. Yang, and W. Y. Jen, “Determining technology trends and forecasts of RFID by a historical review and bibliometric analysis from 1991 to 2005,” Technovation, vol. 7, no. 5, pp. 268-279, 2007.
[15]M. Kim and N. Y. Chong, “Direction Sensing RFID Reader for Mobile Robot Navigation,” IEEE Transactions on Automation Science and Engineering, vol. 6, no. 1, pp.44-54, 2009.
[16]P. W. Hsu, T. H. Lin, H. H. Chang, Y. T. Chen, C. Y. Yen, Y. J. Tseng, C. T. Chang, H. W. Chiu, C. H. Hsiao, P. C. Chen, L. C. Lin, H. S. Yuan and W. C. Chu “Practicability Study on the Improvement of the Indoor Location Tracking Accuracy with Active RFID,” CMC '09. WRI International Conference on Communications and Mobile Computing, pp. 165-169, 2009.
[17]G. Y. Jin, X. Y. Lu, and M. S. Park, “An Indoor Localization Mechanism Using Active RFID Tag,” IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 40-43, 2006.
[18]S. T. Shih, K. Hsieh, and P. Y. Chen, “An Improvement Approach of Indoor Location Sensing Using Active RFID,” ICICIC '06. First International Conference on Innovative Computing, Information and Control, pp. 453-456, 2006.
[19]X. Wang, X. Jiang, and Ye Liu, “An Enhanced Approach of Indoor Location Sensing Using Active RFID,” ICIE '09. WASE International Conference on Information Engineering, pp. 169-172, 2009.
[20]C. S. Wang and S. S. Wu, “An adaptive RFID localization mechanism supporting 3D virtual tour system,” 2008 First IEEE International Conference on Ubi-Media Computing, pp. 219-224, 2008.
[21]M. Chan, D. Estève, C. Escriba, and E. Campo, “A review of smart homes-Present state and future challenges,” Computer Methods and Programs in Biomedicine, vol. 91, no. 1, pp. 55-81, 2008.
[22]M. J. Er, T. P. Tan, and S. Y. Loh, “Control of a mobile robot using generalized dynamic fuzzy neural networks,” Microprocessors and Microsystems, vol. 28, no. 9, pp. 491-498, 2004.
[23]A. Milella, D. P. Donato, G. Cicirelli, and A. Distante, “A fuzzy logic approach to Passive RFID for mobile robot applications,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5561-5566, 2009.
[24]Y. Gao and M. J. Er, “Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp. 462-477, 2003.
[25]A. Zhu and S. X. Yang, “Neuro fuzzy-Based Approach to Mobile Robot Navigation in Unknown Environments,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 37, no. 4, pp. 610-621, 2007.
[26]R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic Model With Slip for Wheeled Omni-directional Robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 285-293, 2002.
[27]L. Huang, Y. S. Lim, D. Li, and C. E. L. Teoh, “Design and Analysis of a Four-wheel Omni-directional Mobile Robot,” Proceedings of International Conference on Autonomous Robots and Agents, pp. 425-428, 2004.
[28]W. C. Chen, “Application of Indoor Localization of Radio Frequency Identification System in Intelligent Robot,“ Master of Electrical Engineering, Yuan Ze University, Master's thesis, 2010.
[29]Y. J. Huang, C. Y. Chen, B. W. Hong, T. C. Kuo, and H. H. Yu, “ Fuzzy neural network based RFID indoor location sensing technique,” Proceedings of the International Joint Conference on Neural Networks, 2010.
[30]Y. J. Huang, B. W. Hong, P. C. Wu, and W. C. Chen, “Adaptive RFID indoor positioning technology for wheelchair home health care robot,” Applied Mechanics and Materials, vol. 145, pp. 583-587, 2012.
[31]Y. R. Chen, “Path Planning and Navigation of Automatic Guided Vehicle Based on Ultrasonic Sensors. “ Tatung University, Master of Mechanical Engineering, Tatung University, Master's thesis, 2005.
[32]M. Ashmore and N. Barnes, “Omni-drive Robot Motion on Curved Paths:The Fastest Path Between Two Points Is Not a Straight-line,” AI 2002: Advances in Artificial Intelligence, pp. 225-236, 2002.
[33]C. H. Tsai, “Design and Implementation of an Omni-directional Moving System. “ Tam Kang University, Master of Electrical Engineering, Master's thesis, 2003.
[34]L. Chonghua and H. Qin, “Design for the Logistics Storage Management System Based on RFID,” 2009 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication, pp. 215-218, 2009.
[35]M. Y. Ahmad and A. S. Mohan, “RFID Reader Localization Using Passive RFID Tags,” Asia Pacific Microwave Conference, pp. 606-609, 2009.
[36]S. Han, H. S. Lim, and J. M. Lee, “An Efficient Localization Scheme for a Differential-Driving Mobile Robot Based on RFID System,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3362 - 3369, 2007.
[37]W. S. Liao, “Fuzzy Neural Network Control for Underwater Vehicles,“ Master of Electrical Engineering, Yuan Ze University, Master's thesis, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top