跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡婉芸
研究生(外文):Wan-Yun Chien
論文名稱:延伸有限元素法模擬雙層材料界面裂縫
論文名稱(外文):XFEM Simulation of an Interface Crack in a Bi-Material Subjected to Bending
指導教授:余念一
口試委員:曾建榮陳永樹
口試日期:2012-1-12
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:英文
論文頁數:73
中文關鍵詞:裂縫材料界面延伸有限元素
外文關鍵詞:XFEMcrackinterface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
延伸有限元素法 (Extended Finite Element Method; XFEM) 改善了傳統的有限元素法,它擁有傳統有限元素法的優點,但是在處理裂縫成長時所產生的不連續(discontinuity)或奇異(singularity)問題時,不需再重新網格化及重新定義裂縫軌跡,且在裂縫成長時,不需要定義明確的裂縫表面。利用這種方法,可以更快速且有效的求得準確的數值解。
本論文利用延伸有限元素法模擬在一個基材/薄膜系統下,一存在於基材靠近介面處之裂縫。探討整個薄膜受平均應力時,裂縫是否會穩態成長;以及薄膜與基材系統在不同的材料的情況下,對於裂縫穩態成長時深度的影響。
接著探討在四點彎矩試片模型下,使用不同材料系數以及不同裂縫長度比時的應力強度因子與能量釋放率,並與理論值比較其誤差。
The extended finite element method (XFEM) keeps the merit of classical finite element method (FEM) and can be used to solve discontinuity and singularity problems without re-meshing
The case of a substrate crack in a thin film/substrate system subjected to a uniform stress applied to the film is firstly considered. The effect of material properties on the steady-state crack location is studied.
The interface crack in a bi-material system subjected to symmetric or asymmetric four-point bending is considered next. The computed stress intensity factors and energy release rates are benchmarked against analytic solutions. In addition, the effects of material property and crack length on mixed-mode stress intensity factor are discussed.
ABSTRACT i
ACKNOWLEDGMENT iii
Nomenclature iv
Table of Content viii
List of Tables ix
List of Figures x
CHAPTER 1 INTRODUCATION 1
1.1 Background 1
1.2 Fracture Mechanics 1
1.3 Literature Review 3
1.4 Objective 5
CHAPTER 2 FUNDAMENTAL THEOREMS OF XFEM 8
2.1 Finite Element Approximations 8
2.2 Finite Element Approximations with Local Enrichment 8
2.3 Discontinuous Enrichment 9
2.4 Near-Tip Enrichment 10
2.5 Stress Intensity Factors 11
2.6 Crack Growth Simulation in a Linear Elastic Solid 14
CHAPTER 3 CRACK GROWTH IN A FILM/SUBSTRATE SYSTEM SUBJECTED TO A UNIFORM TENSION 20
3.1 The Model 20
3.2 Analytic Solutions 20
3.3 XFEM Solutions in Substrate Cracking 21
CHAPTER 4 THE CRACK LYING ON BIMATERIAL INTERFACE 30
4.1 Analytic Solutions 30
4.1.1 Symmetric Geometry Configuration 31
4.1.2 Asymmetric Geometry Configuration 32
4.2 Results and Discussions 33
CHAPTER 5 Conclusions and Discussions 45
References 46
Appendix A 49
Appendix B 62
Belytschko, T. and Black, T. (1999), “Elastic crack growth in finite elements with minimal remeshing,” International Journal for Numerical Methods in Engineering, 45, pp. 601-620.
Belytschko, T. and Gracie, R. (2007), “On XFEM applications to dislocations and interfaces,” International Journal of Plasticity, 23, pp. 1721-1738.
Daux , C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), “Arbitrary branched and intersecting cracks with the extended finite element method,” International Journal for Numerical Methods in Engineering, 48, pp. 1741-1760.
Dolbow, J. (1999), “An extended finite element method with discontinuous enrichment for applied mechanics,” Ph.D. Thesis, Theoretical &; Applied Mechanics, Northwestern University, Evanston, IL.
Dundurs, J. (1969), “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading,” Journal of Applied Mechanics, 36, pp. 650-652.
Fleming, M. Y. A., Chu, B. M. and Belytschko, T. (1997), “Enriched element-free galerkin methods for crack tip fields,” International Journal for Numerical Methods in Engineering, 40, pp. 1483-1504.
George, M., Coupeau, C., Colin, J. and Grilhe, J. (2005), “Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation,” Acta Materialia, 53, pp. 411-417.
Griffith, A. A. (1921), “The phenomena of rupture and flow in solids,” Philosophical Transactions Royal Society Publishing, 221, pp.163-198.
Huang, R., Sukumar, N. and Prevost, J. H. (2003), “Modeling quasi-static crack growth with the extended finite element method Part II. Numerical applications,” International Journal of Solids and Structures, 40, pp. 7539-7552.
Hutchinson, J. W. and Suo, Z. (1992), “Mixed mode cracking in layered materials,” Advances in Applied Mechanics, 29,pp. 63-191.
Laborde, P., Pommier, J., Renard, Y. and Salaun, M. (2005), “High-order extended finite element method for cracked domains,” International Journal for Numerical Methods in Engineering, 64, pp. 354-381.
Lee, S. H., Song, J. H., Yoon, Y. C., Zi, G. and Belytschko, T. (2004), “Combined extended and superimposed finite element method for cracks,” International Journal for Numerical Methods in Engineering, 59, pp. 1119-1136.
Liang, J., Huang, R., Prevost, J. H. and Suo, Z. (2003), “Evolving crack patterns in thin films with the extended finite element method,” International Journal of Solids and Structures, 40, pp. 2343-2354.
Liu, X. Y., Xiao, Q. Z. and Karihaloo, B. L. (2004), “XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials,” International Journal for Numerical Methods in Engineering, 59, pp. 1103-1118.
Melenk, J. M. and Babuska I. (1996), “The partition of unity method: Basic theory and applications,” Computer Methods in Applied Mechanics and Engineering, 139, pp. 289-314.
Moes, N. and Belytschko, T., (2002), “Extended finite element method for cohesive crack growth,” Engineering Fracture Mechanics, 69, pp. 813-833.
Moes, N., Dolbow, J. and Belytschko, T. (1999), “A finite element method for crack growth without remeshing,” Engineering Fracture Mechanics, 69, pp. 813-833.
Nguyen, V. P. (2005), “An Object Oriented Approach to the Extended Finite Element Method with Applications to Fracture Mechanics,” Master Thesis, Hochiminh City University of Technology.
Nguyen, V. P., Rabczuk, T., Bordas, S. and Duflot, M. (2008), ”Meshless method:a review and computer implementation aspects,” Mathematics and Computers in Simulation, 79, pp. 763-813.
O’Dowd, N. P., Shih, C. F. and Stout, M. G. (1992), “Test geometris for measuring interfacial fracture toughness,” International Journal of Solids and Structures, 29, pp. 571-589.
Rice, J. R. (1968), “A path independent integral and the approximate analysis of strain concentration by notches and crack,” Journal of Applied Mechanics, 35, pp. 379-386.
Suga, T., Elssner, E. and Schmander, S. (1988), “Composite parameters and mechanical compatibility of material joints,” Journal of Composite Materials, 22, pp. 917-934.
Sukumar, N., Moes, N., Moran, B. and Belytschko, T. (2000), “Extend finite element method for three-dimensional crack modeling,” International Journal for Numerical Methods in Engineering, 48, pp.1549-1570.
Sukumar, N., Srolovitz, D. J., Baker, T. J. and Prevost, J. H. (2003), “Brittle fracture in polycrystalline microstructures with the extended finite element method,” International Journal for Numerical Methods in Engineering, 56, pp. 2015-2037.
Suo, Z., and Hutchinson, J. W. (1989) “Steady-state cracking in brittle substrates beneath adherent films,” International Journal of Solids and Structures, 25, pp. 1337-1353.
Thouless, M. D., Evans, A. G., Ashby, M. F. and Hutchinson, J. W. (1987), “The edge cracking and spalling of brittle plates,” Acta Materialia, 35, pp. 1333-1341.
Timoshenko, S. and Goodier J. N. (1970), “Theory of Elasticity,” McGraw-Hill Education, 2 Penn Plaza, New York.
Xiao, Q. Z. and Karihaloo, B. L. (2006), “Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery,” International Journal for Numerical Methods in Engineering, 66, pp. 1378-1410.
Zi, G. and Belytschko, T. (2003), “New crack-tip elements for XFEM and applications to cohesive cracks,” International Journal for Numerical Methods in Engineering, 57, pp. 2221-2240.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top