跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊祐誠
研究生(外文):You-Cheng Jhuang
論文名稱:應用於高加速壽命測試之電磁鎚與氣壓鎚的特性比較與其對測試結果之影響研究
論文名稱(外文):Features of the Newly Developed Electrodynamic Hammer and the General Pneumatic Hammer as Used in Highly Accelerated Life Test Systems
指導教授:陳永樹陳永樹引用關係
口試委員:何旭川黃德言
口試日期:2012-7-24
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
中文關鍵詞:可靠度高加速壽命測試衝擊氣壓鎚電磁鎚
外文關鍵詞:Electrodynamic hammerReliabilityHighly accelerated life testshockPneumatic hammer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
高加速壽命試驗(Highly Accelerated Life Test-HALT)主要使產品曝露於嚴苛的環境,以較短的時間引發潛在的問題,以供產品的改良與設計。目前市面上HALT機台,大多以氣壓鎚來產生連續衝擊,因此本研究主要比較氣壓鎚與新型的電磁鎚用於HALT系統有何差異?氣動鎚利用高壓空氣在推動內部活塞,使其撞擊緩衝材來產生衝擊波。然而氣壓鎚在作動過程中會產生類似振動的諧和信號(活塞的往復運動所造成的)和衝擊(發生於諧和信號的端點)。電磁鎚的作動原理與電磁式振動機相當類似,而其外觀與氣壓鎚相同。比較單根氣壓鎚與電磁鎚的時域信號後,氣動鎚的往復衝擊的頻率和加速度的幅度,隨著輸入壓力變化而同時改變,且其各脈衝之間的再現性不高;而電磁鎚可以獨立控制的往復衝擊的頻率與強度。此外,氣壓鎚的輸出強度又受限於輸入壓力,因此其輸出強度會比電磁鎚來的低。雖然電磁鎚的輸出強度比氣壓鎚來的大,但是它的往復衝擊的頻率並不像氣壓鎚那麼高。從頻率響應頻譜發現,氣壓鎚活塞往復運動會使能量集中於較低頻率的範圍;而衝擊的響應會使能量集中於較高頻的範圍,這意味著待測物會同時受到低頻能量與高頻能量的影響。為了解兩種不同衝擊鎚對於量測結果有何不同,分別使用懸臂樑(一維)和印刷電路板(二維)進行測試。從待測物的頻譜可以清楚看到,除了有待測物本身自然頻率外,還可以看到有活塞的往復運動頻率。然而以電磁鎚系統激發待測物時,在待測物的頻譜上僅有其本身之自然頻率。
氣壓鎚系統利用輸入壓力的提高,來增強其環境應力,在增壓的過程中,往復衝擊的頻率也隨之改變,如果往復頻率與待測物的自然頻率相同時,待測物即發生共振,甚至造成破壞。這使得在測試過程中,很難判定待測物是因為受到輸入的衝擊波本身強度太大而造成失效,抑或因為共振而造成待測物失效?這是使用傳統氣壓鎚於高加速壽命測試必須注意之要點。
Highly accelerated life test (HALT) is the method that exposes the products to the harsh environment by combining both vibration and thermal loadings simultaneously. It has the advantages of triggering the potential failure of the products at a shorter time period for their quality design improvement. The pneumatic hammers are used to generate repetitive shock in the current HALT machines. This study investigated the differences in the HALT system which was driven by the original pneumatic and the newly designed electrodynamic (ED) hammers as the force driving source.
The cylindrical pneumatic hammer was driven by the compressed air in pushing its inside piston to hit against the anvil in generating impacts. Thus, both harmonic signals (due to the piston’s reciprocating movement) and impacts pulse (happened at peaks of the harmonic signal due to hit on anvil) were generated. Similar in principle to those electrodynamic shakers as used in vibration tests, the ED hammer has a much smaller cylindrical construction which is identical to that of the pneumatic hammers’. It generates only impacts in general. Comparing the acceleration results both for pneumatic and ED hammers themselves only(exclude the table), it was noticed that the pneumatic hammer had both the reciprocating impact frequencies and the magnitudes of acceleration increased simultaneously following the raise of the supply pressure. Also the repeatability of its shock pulses was not quite stable. Whereas, the ED hammer could control the reciprocating impact frequency and the force independently. Besides, the pneumatic hammer had limited impact strength due to the constraint from the input pressure of the compressed air while ED hammer can easily generate high magnitude impacts by controlling the energized time to the electromagnetic coils but its reciprocating impact frequencies were not as high as those of pneumatic hammers’.
From the frequency response spectrum of those accelerations time history of the pneumatic hammer testing, it was found that the reciprocating piston motion will cause higher acceleration response amplitudes in the lower frequency ranges while impact will generate higher acceleration amplitudes in the higher frequency range. It means that products will be subject to vibration accelerations resulting from piston’s reciprocating movement and shock (from impacts on anvil) at the same time. However, Ed hammer has impact accelerations only.
In order to understand the influence on the test specimen response in using these two different hammers, a cantilever beam (1-D) and a printed circuit board-PCB (2-D) were tested separately. The time history of the response was then transformed into shock response spectrum (SRS) that peak response accelerations could be seen clearly at both the natural frequency of the test specimen itself and at the reciprocating frequency of the impacting piston’s. However, only the former was observed for the testing with the ED hammer.
The reciprocating impact frequencies of the pneumatic hammer system vary with the supply pressure increases. When the reciprocating impact frequency happened to be the same as the natural frequencies of the test specimen, resonance will occur. This often causes misjudgment in the HALT test for products’ failure. In other words, if the increasing step accelerations in HALT test caused failure of the test specimen, it really hard to judge this failure was resulted from resonance or the levels of magnitudes of the impact pulses. This is what needed to be cautious when checking the failure with pneumatic hammers in HALT.
摘要 iv
Abstract vi
致謝 viii
目錄 ix
圖目錄 xii
符號說明 xix
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機及目的 6
第2章 基礎理論 7
2.1 具阻尼之衝擊響應 7
2.2 暫態振動理論 8
2.3 脈衝衝擊之響應 9
2.4 速度衝擊響應 13
2.5 拉普拉斯轉換 14
2.6 z轉換 15
第3章 衝擊響應頻譜的計算方式 17
3.1 簡介 17
3.2 衝擊響應頻譜理論 19
3.3 衝擊響應頻譜的計算 22
3.4 SRS的實際應用 28
第4章 實驗儀器及單根衝擊鎚之比較 43
4.1 儀器介紹 43
4.1.1 SigLab加速度量測設備 43
4.1.2 Test Partner 3量測系統 45
4.1.3 單根衝擊鎚量之邊界條件 48
4.2 氣壓鎚系統與其作動原理 50
4.2.1 氣壓鎚系統 50
4.2.2 氣壓鎚的作動原理 51
4.2.3 氣壓鎚的時域量測結果 61
4.2.4 氣壓鎚的衝擊響應頻譜圖 68
4.3 電磁鎚系統與其作動原理 72
4.3.1 電磁鎚系統 72
4.3.2 電磁鎚作用原理 73
4.3.3 電磁鎚的時域量測結果 80
4.3.4 電磁鎚的衝擊響應頻譜 85
第5章 氣壓鎚與電磁鎚系統之量測結果比較 89
5.1 單一氣壓鎚與電磁鎚之差異性 89
5.2 懸臂樑於兩套系統的量測結果比較 91
5.2.1 試片之邊條件設定 92
5.2.2 懸臂樑於氣壓鎚系統之量測結果探討 95
第6章 結論 113
參考文獻 117
[1]賴耿陽,最新橡膠材料實務,復漢出版社,台灣,1996。
[2]周雄偉,「橡膠支承墊於環境衝擊下之劣化行為」,國立成功大學土木工程研究所,碩士論文,2006。
[3]游永豐,「電子裝置衝擊減振研究」,私立元智大學機械工程研究所,碩士論文,2000。
[4]黃郁淳,「衝擊測試下餘震對電子構裝元件可靠度之影響研究」,私立元智大學機械工程研究所,碩士論文,2009。
[5]A. Halfpenny, “A frequency domain approach for fatigue life estimation from Finite Element Analysis,” Key Engineering Materials, Vols.167-168, pp. 401-410, 1999.
[6]H. W. McLean, HALT, HASS, and HASA explained : accelerated reliability techniques,ASQ Quality Press,Milwaukee WI, 2000.
[7]H. McLean, “From HALT results to an accurate field MTBF estimate,” Reliability and Maintainability Symposium (RAMS), Florida, 2010.
[8]G. R. Henderson, “Evaluating vibration environments using the shock response spectrum, ” Sound and Vibration, April, 2003.
[9]吳亮東,「高加速壽命試驗溫度與震動失效模式檢測分析」,國立清華大學工程與系統科學所,碩士論文,2009。
[10]Y. Zhao, C. Basaran, A. Cartwright, and T. Dishongh, “Inelastic behavior of microelectronics solder joints under concurrent vibration and thermal cycling,” Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, 2000.
[11]李洋欣,「覆晶球柵陣列構裝元件於不同溫度及振動環境與結合兩者之高加速壽命測試結果比較」,私立元智大學,碩士論文, 2009。
[12]W. Tustin and D. Jariwala, Random vibration &; shock testing, Equipment Reliability Institute, California, 2005.
[13]S. Jawaid and P. Rogers, “Accelerated reliability test results : importance of input vibration spectrum and mechanical response of test article,” Reliability and Maintainability Symposium, Los Angeles, California, 2000.
[14]P. Jiang and J. Hou, “Characteristics and principle of the new cyclostationary and non-Gaussian omni-axis vibration environment,” Informatics in Control, Automation and Robotics, Asia, March, 2010.
[15]E. Mahajerin and G. Burgess, “Investigation of package vibration during the repetitive shock test,” Londom, June 30, 2010.
[16]R. D. Neilson and A. A. Rodger, “Design and dynamic analysis of a pneumatic impulse generating device for the non-destructive testing of ground anchorages,” Mechanical Systems and Signal Processing, Vol.21,pp.2523-2545, 2007.
[17]D. O. Smallwood, “An improved recursive formula for calculating shock response spectra,” Shock and Vibration Bulletin, New Mexico, 1981.
[18]D. A. Halfpenny, “Accelerated vibration testing based on fatigue damage spectra,” nCode International, UK, 2006.
[19]J. TŮMA and P. Kočí, “Calculation of shock response spectrum,” Dynamics of machines 2009, Prague, 2009.
[20]G. Parzianello and D. Pavarin, “An estimation method for the Shock Response Spectrum propagating into plates subjected to hypervelocity impact,” Measurement, 2010.
[21]H. C.M and A. G. Piersol, Harris' Shock and Vibration Handbook, McGraw-Hill, New York, 2002.
[22]T. Irvine, An introduction to the shock response spectrum, Ebook, July, 2010.
[23]C. Lalanne, Mechanical Vibration and Shock Analysis- Mechanical Shock vol. 2, John Wiley &; Sons, London,2009.
[24]J. S. Bendat and A. G. Piersol, Random data analysis and measurement procedures, Wiley, N.J, 2010.
[25]S. D. Stearns and R. A. David, Signal processing algorithms, Prentice-Hall, New Jersey, 1988
[26]W. T. Thomson and M. D. Dahleh, Theory of vibration with applications, Prentice Hall, New Jersey, 1997.
[27]B. C. Kuo,自動控制系統,全華科技圖書股份有限公司,台北,1991。
[28]J. Dorsey,自動控制-建模、識別、分析、設計,美商麥格羅-希爾國際股份有限公司,台北,2005。
[29]王柏村,振動學修訂版,全華科技圖書股份有限公司,台北,2002。
[30]呂紹台,「應用振動響應頻譜預測方法於微衛星結構之衝擊環境分析與驗證」,國立成功大學,碩士論文, 2008。
[31]陳煥章,「衝擊產生器的設計參數與其響應頻譜探討」,國立台灣大工學院應用力學研究所,碩士論文,2009。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊