(3.80.6.131) 您好!臺灣時間:2021/05/14 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡志遠
研究生(外文):Chih-Yuan Tasi
論文名稱:結合PC-Based與無線通訊之智慧型自走車控制與實現
論文名稱(外文):Design and Control for Intelligent Mobile Robot Linked by PC-Based and Wireless Communication
指導教授:林仲廉林仲廉引用關係
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:113
中文關鍵詞:模糊控制自走車無線通訊避障
外文關鍵詞:Fuzzy controlAutonomous Mobile VehicleWireless communicationsObstacle avoidance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:324
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中應用模糊控制器實現了自走車之避障整合設計。並且自走車的控制命令來自於電腦的即時控制。自走車系統主要分為:紅外線測距感測器、電子羅盤、無線攝影機、無線通訊以及Arduino控制板。避障與方位辨別之目的在於使自走車在惡劣的環境下,仍可繼續保持往需要探勘的方向前行,並能透過無線攝影機隨時環顧四周環境。
本論文使用LabVIEW圖控程式設計出模糊控制器,並將自走車置於未知環境中,使用兩種模糊歸屬函數比較其差異性,實驗結果也證實自走車能成功進行避障與方向識別。


The main goal of this thesis is to propose fuzzy control algorithm for Autonomous Mobile Vehicle(AMV). The sensor module on the AMV contains the infrared rays, e-compass, wireless camera, wireless communications, and the arduino micro-control board. Hence the AMV can perform obstacle avoidance and orientation identification even in the dangerous environment. In addition, the environment image can to transmitted to the control PC by wireless camera. This study introduces LabVIEW software platform to design fuzzy controller. Two different fuzzy membership functions have been adopted for control purposes. Experimental results also confirm that the proposed AMV can successfully to perform obstacle avoidance and orientation identification.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 2
1.3 論文架構 3
第二章 系統架構 5
2.1 自走車系統架構 5
2.2 Arduino概述 6
2.3 LabVIEW 介紹 7
2.4 前置面板(Front Panel) 7
2.5 圖形程式區(Block Diagram) 8
2.6 Fuzzy System Designer 10
2.7 硬體架構 13
2.8 控制元件 18
2.8.1 Arduino 18
2.8.2 GY-80 20
2.8.3 紅外線測距感測器 22
2.8.4 步進馬達 24
2.8.5 馬達驅動器 25
2.8.6 伺服機 27
2.8.7 無線攝影機 29
2.8.8 無線通訊模組 30
2.8.9 aXbee 32
2.9 控制元件原理 36
2.9.1 Arduino Maga 2560 36
2.9.2 MEMS概述 37
2.9.3 加速度規(Accelerometer) 38
2.9.4 電子羅盤(E-compass) 40
2.9.5 加速度規補償電子羅盤 43
2.10 通訊架構 45
第三章 系統整合與測試 49
3.1 自走車整合功能 49
3.2 自走車人機介面 51
3.3 Block Diagram 54
第四章 避障法則 61
4.1 模糊控制理論 61
4.1.1 模糊化 62
4.1.2 模糊規則庫 63
4.1.3 模糊推論模式與解模糊化 63
4.2 模糊避障 65
4.3 動態方程式 67
第五章 實驗結果與討論 70
5.1 實驗架構 70
5.2 實驗環境 71
5.3 避障與方位補正實驗 73
5.4 避障與方位補正實驗結果比較 94
5.5 電子羅盤傾斜補償實驗 100
5.6 電子羅盤傾斜補償實驗結果比較 103
第六章 結論與未來方向 104
6.1 結論 104
6.2 未來研究方向 106
參考文獻 107
簡歷 112


1.林于琬,「以超音波感測器建立自走車環境地圖之研究」,國立成功大學工程科學系,碩士論文,民國94年。
2.林穎裕,「應用模糊控制於自走車路徑導引避障之整合設計」,國立成功大學航空太空工程研究所,碩士論文,民國92年。
3.美商ANALOG DEVICES公司,網址http://www.analog.com/en/index.html,線上檢索時間2012年11月8號。
4.美商Honeywell公司,網址http://honeywell.com/Pages/Home.aspx,線上檢索時間2012年11月15號。
5.孫駿榮、吳明展、盧聰勇,「最簡單的互動設計Arduino一試就上手」,碁?資訊有限公司,民國99年。
6.陳依璟,「自走車之路徑規劃與位置追蹤」,國立中央大學電機工程學系,碩士論文,民國100年。
7.陳建富,「履帶機器人之設計」,國立雲林科技大學電機工程系,碩士論文,民國98年。
8.陳瓊興,「LabVIEW 2010與ZigBee感測電路」,台科大圖書股份有限公司,民國100年。
9.惠汝生,「LabVIEW 7.1 Express 圖控程式應用」,全華科技圖書公司,民國95年。
10.曾耀輝,「地雷偵測機器人之系統開發與研究」,國立雲林科技大學電機工程系,碩士論文,民國98年。
11.維基百科,網址http://zh.wikipedia.org/wiki/I2C,線上檢索時間2012年8月14號。
12.劉武發、蔣蓁、龔振邦,「基於磁阻和MEMS加速度傳感器的電子羅盤設計及應用」,兵工學報,Vol. 29, No. 2, 2008.
13.鄭永彬,「大型撓性結構系統之測試平台建置與控制」,清雲科大機械工程系,碩士論文,民國100年。
14.蕭鈞毅,「履帶式機器人避障之測試與實現」,清雲科大機械工程系,碩士論文,民國100年。
15.蘇木春、張孝德,「機器學習:類神經網路、模糊系統以及基因演算法則」,全華科技圖書公司,民國88年。
16.A. Kalantari, E. Mihankhah, S.A.A. Moosavian, “Safe Autonomous Stair Climbing for a Tracked Mobile Robot Using a Kinematics based Controller”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Tehran, Iran, pp. 1891-1896, July 14-17, 2009.
17.A. P. Tirumalai, B. G. Schunck, and R. C. Jain, “Evidential Reasoning for Building Environment Maps”, IEEE Transaction on Systems Man and Cybernetics, Vol. 25, NO.1 , pp.10-20, January 1995.
18.C. C. Wang, C. T. Shen, “Implementation of Wireless Image Tracking for Wheeled Mobile Robots”, The 3rd Intetnational Conference on Innovative Computing Information and Control, Chienkuo Technology University, Changhua City, Taiwan, 2008.
19.C. G. Rusu, I. T. Birou, E. Szoke, “Fuzzy Based Obstacle Avoidance System”, Technical University of Cluj-Napoca, 2009.
20.C. H. Hsieh, M. L. Wang, L. W. Kao, and H. Y. Lin, “Mobile Robot Localization and Path Planning Using an Omnidirectional Camera and Infrared Sensors”, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, National Chung Cheng University Chiayi, Taiwan, pp.1947-1952, 2009.

21.D. Koh, K. Hyun, S. Kim, “Design of Multi-joint Tracked Robot for Adaptive Uneven Terrain Driving”, Proceedings of the 4th International Conference on Autonomous Robots and Agents, Department of Mechanical Engineering Korea Advanced Institute of Science and Technology, pp. 464~469, 2009.
22.E. O. Freire, R. F. Vassallo, T. F. Bastos-Filho, and M. Sarcinelli-Filho, “Prototyping a Wheeled Mobile Robot Embedding Multiple Sensors and Agent-Based Control System”, Proc. 43rd IEEE Midwest Symp. On Circuits and Systems, Lansing MI, Department of Electrical Engineering, Federal University of Espirito Santo, pp.926-929, August 8-11, 2000.
23.Fuyu Liu, Hongli Geng, Yan-Qing Zhang, “Interactive Fuzzy Interval Reasoning for smart Web shopping”, Applied Soft Computing, Vol. 5, pp. 433-439, 2005.
24.G. Yasuda and H. Takai, “Sensor-Based Path Planning and Intelligent Steering Control of Nonholonomic Mobile Robots”, Proceedings of the IEEE Industrial Electronics Society, Vol. 1, pp.317-322, 2001.
25.Ho-Duck Kim, Sang-Wook Seo, In-hun Jang, and Kwee-Bo Sim, “SLAM of Mobile Robot in the indoor Environment with Digital Magnetic Compass and Ultrasonic Sensors”, International Conference on Control, Automation and Systems, Seoul, Korea, pp. 87-90, October 17-20, 2007.
26.J. Borenstein, and Y. Koren, “Histogramic In-motion Mapping for Mobile Robot Obstacle Avoidance”, IEEE Transactions on Robotics and Automation, Vol. 7, NO. 4, pp. 535-539, August 1991.
27.Jung Tae Cho, and Boo Hee Nam, “A Study on the Fuzzy Control Navigation and the Obstacle Avoidance of Mobile Robot Using Camera”, Department of Electrical and Computer Engineering Kangwon National University, Chunchon, Korea, pp. 2993-2997, 2000.
28.K. N. Faress, M. T. El-Hagry, A. A. El-Kousy, “Fuzzy Modeling of a Wheeled Mobile Robot”, Proceedings of International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Electronics Research Institute, Dokki, Cairo, Egypt, 2005.
29.Love Electronics expands,網址http://www.loveelectronics.co.uk/,線上檢索時間2012年3月24號。
30.N. Li, S. Ma, B. Li, M. Wang, Y. Wang, “A Dynamic Shape-shifting Method for a Transformable Tracked Robot”, Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, pp.466~471, December 14-18, 2010.
31.Q. H. Vu, B. S. Kim, J. B. Song, “Autonomous Stair Climbing Algorithm for a Small Four-Tracked Robot”, International Conference on Control, Automation and Systems, Seoul, Korea, pp.2356~2360, October. 14-17, 2008.
32.R. Lin, Z. Wang, R. Sun, and L. Sun, “Vision-based Mobile Robot Localization and Mapping Using the PLOT Features”, Proceedings of IEEE International Conference on Mechatronics and Automation, Soochow University Suzhou, Jiangsu Province, China, pp. 1921-1927, August 5-8, 2012.
33.S. Duan, Y. Li, S. Chen, L. Chen, L. Zou, Z.Ma, J. Ding, “Study of Obstacle Avoidance Based on Fuzzy Planner for Wheeled Mobile Robot”, Proceedings of the 8th World Congress on Intelligent Control and Automation, Robotics Institute of Changzhou University Changzhou University, pp.672-676, June 21-25, 2011.
34.Seung-Hun Kim, Chi-Won Roh, Sung-Chul Kang, and Min-Yong Park, “Outdoor Navigation of a Mobile Robot Using Differential GPS and Curb Detection”, IEEE International Conference on Robotics and Automation Roma, Seoul, Korea, pp. 3414-3419, April 10-14, 2007.
35.SHARP GP2Y0A21YK Optoelectronic Device Data Sheet.
36.Sunhong Park, and Shuji Hashimoto, “Autonomous Mobile Robot Navigation Using Passive RFID in Indoor Environment”, IEEE Transactions on Industrial Electronics, Vol. 56, NO. 7, July 2009.
37.T. Germa, F. Lerasle, N. Ouadah, V. Cadenat, “Vision and RFID data fusion for tracking people in crowds by a mobile robot”, Computer Vision and Image Understanding, pp.641-651, 2010.
38.Tzuu-Hseng S. Li, Shin-Jie Chang, Wei Tong, “Fuzzy Target Tracking Control of Autonomous Mobile Robots by Using Infrared Sensors”, IEEE TRANSACTIONS ON FUZZY SYSTEMS, National Cheng-Kung University, Department of Electrical Engineering, Tainan, Taiwan, Vol. 12, No. 4, pp. 491-501, 2004.
39.Y. L. Wei, M. C. Lee, “Mobile robot autonomous navigation using MEMS gyro north finding method in Global Urban System”, Proceedings of IEEE International Conference on Mechatronics and Automation, Department of Mechanical Pusan National University Engineering Pusan, South Korea, pp. 91-69 August 7-10, 2011.
40.Y. Liu, G. Liu, “Track-Stair Interaction Analysis and Online Tipover Prediction for a Self-Reconfigurable Tracked Mobile Robot Climbing Stairs”, IEEE/ASME Transactions On Mechatronics, Ryerson University, Toronto, Canada, Vol. 14, pp. 528~538, 2009.
41.Y. Wei, and M. Lee, “A New MEMS Gyro North Finding Approach Using LSM for Mobile Robot Heading Detection”, SICE Annual Conference, Akita University, Akita, Japan, pp. 2262-2267 August 20-23, 2012.
42.Z. Fan, Y. Koren and D. Wehe, “Tracked mobile robot control:hybrid approach”, Control Engineering Practice, Vol. 3, No. 3, pp.329-336, 1995.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔