(3.236.214.19) 您好!臺灣時間:2021/05/07 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭祺耀
研究生(外文):Ci-Yao Jheng
論文名稱:表面電漿效應之於銀奈米腔體之數值模擬與研究
論文名稱(外文):Numerical study and analysis of surface plasmon effects on silver nanocavity
指導教授:卓聖芬
指導教授(外文):S.-F. Joe
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:64
中文關鍵詞:有限元素法表面電漿束縛模及非束縛模
外文關鍵詞:finite element methodsurface plasmon resonance (SPR)bonding and anti-bonding modes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩大主題:
主題一: 奈米銀珍珠之表面電漿研究
主題一利用有限元素法針對奈米銀珍珠陣列以及奈米銀殼珍珠對陣列,珍珠內部填充介電質材料研究它的表面電漿模式的效應,其模擬結果顯示奈米銀殼珍珠陣列以及奈米銀殼珍珠對陣列中間填充介電材料時,會顯示兩個表面電漿共振模這兩個共振模就是束縛模以及非束縛模,而這個現象是在奈米銀珍珠的同樣體積下所看不到的。
主題二:奈米銀珍珠嵌入矽基板之表面電漿研究
主題二利用有限元素法分析計算一個三維銀球結構嵌入二氧化矽基板,分別為奈米銀珍珠陣列與填入不同介質之奈米銀殼珍珠陣列來研究它的表面電漿模式的效應,其模擬結果顯示與topic 1所得知結果有顯著之差異,我們發現在奈米銀珍珠周圍具有侷域性場強,共振並不是單一奈米粒子的共振,而是由於dipole與嵌入介質基板互相作用,使得dipole共振強度有所不同。除此之外,映象電荷之效應也在topic 2中被討論。


This thesis is divided into two topics:
In topic 1, we numerically investigate the surface plasmon resonance (SPR) modes in periodic silver-shell nanopearl and its dimer arrays with the core relative permittivities filled inside the dielectric holes (DHs) by means of finite element method (FEM) with three-dimensional calculations. Numerical results of resonant wavelengths corresponding to the effects of different period of unit cells, radii of DHs, illumination wavelengths and the DH core relative permittivity of silver-shell nanopearls are reported as well. Simulation results show that silver-shell nanopearl arrays and its dimer arrays with DHs exhibit tunable SPR modes corresponding to the bonding and anti-bonding modes, respectively, that are not observed for the solid silver cases with the same volume. The boundary symmetry on the inner and outer surfaces of the silver nanopearl arrays with DHs can be broken by their structural and material parameters. It is shown that only the bonding mode can be excited at the lower core relative permittivity, whereas both the bonding and anti-bonding modes can be excited at the higher core relative permittivity. These results are crucial in designing localized SPR sensors and other optical devices based on periodic metal nanoparticle array structures.
In Topic 2, we numerically investigate the SPR modes in periodic silver-shell nanopearl and its dimer arrays embedded with different depths in a substrate by means of FEM with three-dimensional calculations. The optical responses of embedding nanoparticles are quite different from that of the results obtained from Topic 1 due to the polarization effects in the substrate. In addition, the image charge which is similar to the effect of an electric charge has been discussed in topic 2 as well.


中文摘要........................I
英文摘要........................II
誌謝............................III
目錄............................IV
表目錄..........................VII
圖目錄..........................VIII
第一章 簡介.....................1
1.1 前言........................1
1.2 表面電漿簡介................1
1.3 文獻回顧與研究動機..........2
1.4 本文內容與章節..............2
第二章 數值方法.................4
2.1 數值方法之比較..............4
2.2 有限元素法..................4
2.3表面電漿原理簡介.............8
第三章 主題一:奈米銀殼珍珠陣列與奈米銀殼珍珠對陣列之表面電漿研究..........................13
3.1 本章概述....................13
3.2 前言........................13
3.3數值方法與模型...............14
3.4 結果與討論..................15
3.5本章小結.....................32
第四章 主題一:奈米銀殼珍珠陣列與奈米銀殼珍珠對陣列嵌入矽基板之表面電漿研究................33
4.1 前言........................33
4.2數值方法與模型...............33
4.3 結果與討論..................34
4.4本章小結.....................55
第五章 結論.....................57
參考文獻........................58
簡 歷........................62


1.有限元素法:http://cslin.auto.fcu.edu.tw/scteach/saw/e.htm
2.R. W. Wood, Philos. Mag. 4, 396, 1902.
3.U. Fano, J. Opt. Soc. Am. 31, 213, 1941.
4.R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
5.E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960).
6.ANDREAS OTTO, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” zeitschrift für Physik 261, 398-401 (1968).
7.王灯利,「表面電漿對於半導體發光元件光萃取效率的影響之探討」,中央大學,碩士論文,民國九十五年。
8.顏嘉緯,「金屬反射層對發光二極體發光強度增強及光型調製之研究」,中央大學,碩士論文,民國九十七年。
9.張勝雄,「以電漿子波導實現積體光學元件之研究與評價」,中央大學,博士論文,民國九十七年。
10.陳信吉、張主聖,Marc有限元素實例分析,全華圖書,台北,民國九十五年。
11.吳民耀、劉威志,「表面電漿子理論與模擬」, 物理雙月刊, 28 卷, 2 期 (2006).
12.葉翰軒,「高雙折射差光子晶體光纖與奈米銀殼對之進場光學性質研究」,清雲科技大學,碩士論文,民國九十七年。
13.林義儒,「奈米銀表面電漿共振效應研究」,清雲科技大學,碩士論文,民國九十九年。
14.COMSOL Multiphysics TM, http://www.comsol.com
15.洪群泰,「全場相位式表面電漿共振技術」,中央大學,碩士論文,民國九十五年。
16.張志涵、陳守義、林瑞模,有限元素法於生物力學應用的概說。
17.周趙遠鳳,電磁學,儒林圖書公司,民國一百年。
18.翁志勳,「有限元素分析法分析光子晶體光纖」,中華大學,碩士論文,民國九十一年。
19.周趙遠鳳、李信興、劉民舜、鄧吉倫、林煒翔、劉民鈞, 「銀殼介質核心菱形鏈狀波導之於表面電漿效應之研究」, 清雲學報, 31 卷, 2 期 (2006).
20.材料世界網 - 雜誌簡介 http://www.materialsnet.com.tw/MagCataPre.aspx?pid=137
21.V. M. Shalaev, Ed., “Optical Properties of Nanostructured Random Media” (Springer-Verlag, Berlin, 2002).
22.M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839–862 (2002).
23.S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – A route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
24.U. Kreibig, and M. Vollmer, “Optical Properties of Metal Clusters” (Springer-Verlag, Berlin, 1995).
25.Y.-F. Chau and D. P. Tsai, Opt. Commun. 269, 389 (2007).
26.邱國斌、蔡定平, 「金屬表面電漿簡介」, 物理雙月刊, 28 卷, 2 期 (2006).
27.J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, Opt. Express 6, 213 (2000).
28.J. P. Kottmann, O. J. F. Martin, Opt. Lett. 14, 1096 ( 2001).
29.J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz and J. Microsc. 202, 60 (2001).
30.R. Fuchs, Phys. Rev. B, 11, 1732 (1975).
31.E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
32.J.Kottmannand O.Martin, “Retardation-induced plasmon resonances in coupled nanoparticles ,” Opt. Lett. 26,1096–1098 (2001).
33.W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
34.K.-H. Su, Q.-H.Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
35.S. A. Maier, “Plasmonics – Towards Subwavelength Optical Devices,” Curr. Nanosci., Vol. 1, 17–22, 2005.
36.Hao F, Nehl Colleen L, Hafner Jason H, and Nordlander Peter (2007) Plasmon Resonances of a Gold Nanostar. Nano Letters 7, 729-732.(範例)
37.T. C. Peng, W. C. Lin, C. W. Chen and D. P. Tsai, “Enhanced Sensitivity of Surface Plasmon Resonance Phase-Interrogation Biosensor by Using Silver Nanoparticles,” Plasmonics 6, 29-34 (2011).
38.F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
39.M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–763 (2010).
40.S. Tripathy, R. Marty, V. K. Lin, S. L. Teo, E. Ye, A. Arbouet, L. Saviot, C. Girard, M. Y. Han, and A. Mlayah, “Acousto-plasmonic and eurface-4nhanced Raman ecattering properties of coupled gold nanospheres/nanodisk trimers,” Nano Lett. 11(2), 431–437 (2011).
41.F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
42.Chia-Yang Tsai, Shao-Ping Lu, Jyun-Wei Lin, and Po-Tsung Lee, " High sensitivity plasmonic index sensor using slablike gold nanoring arrays," Appl. Phys. Lett. 98, 153108 (2011).
43.Huang Y W, Chen W T, Wu P C, Fedotov V, Savinov V, Ho Y Z, Chau Y F, Zheludev N I and Tsai D P, "Design of plasmonic toroidal metamaterials at optical frequencies," Opt. Express 20, 1760-1768 (2012).
44.Jer-Shing Huang, Johannes Kern, Peter Geisler, Pia Weinmann, Martin Kamp, Alfred Forchel, Paolo Biagioni, and Bert Hecht, " Mode Imaging and Selection in Strongly Coupled Nanoantennas," Nano Lett. 10, 2105–2110 (2010).
45.Barnes W L, Dereux A and Ebbesen T W, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
46.Liu W C and Tsai D P, "Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance," Phys. Rev. B 65, 155423 (2002).
47.Miller M M and Lazarides A A, "Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering," J. Opt. A: Pure Appl. Opt. 8, S239-S249 (2006).
48.Xu S, Cao Y C, Zhou J, Wang X, Wang X and Xu W, "Plasmonic enhancement of fluorescence on silver nanoparticle films," Nanotechnology 22, 275715 (2011).
49.Kelly K L,Coronado E, Zhao L L and Schatz G C, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
50.Y. F. Chau, H. H. Yeh and D. P. Tsai, "Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair," Appl. Opt. 47, 5557-5561 (2008).
51.Y. F. Chau, Lin Y J and Tsai D P, "Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars," Opt. Express 18, 3510-3518 (2010).
52.Y. F. Chau, H. H. Yeh, Liao C C, Ho H F, Liu C Y and Tsai D P, "Controlling surface plasmon of several pair arrays of silver-shell nanocylinders," Appl. Opt. 49, 1163-1169 (2010).
53.Jer-Shing Huang, Johannes Kern, Peter Geisler, Pia Weinmann, Martin Kamp, Alfred Forchel, Paolo Biagioni, and Bert Hecht, " Mode Imaging and Selection in Strongly Coupled Nanoantennas," Nano Lett., 10, 2105–2110 (2010).
54.Kottmann J P, Martin O J F, Smith D R and Schultz S, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000).
55.Chen X W, Choy C H, He S and Chiu P C, "Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell," Opt. Express 15, 7083-7094 (2007).
56.Xu, H. X., Bjerneld, E. J., Kall, M., Borjesson, L., "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Phys. ReV. Lett. 83, 4357–4360 (1999).
57.Michaels, A. M., Jiang, J., Brus, L. E., "Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules," J. Phys. Chem. B, 104, 11965–11971 (2000).
58.Xu, H. X., Aizpurua, J., Kall, M., Apell, P.,"Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. ReV. E, 62, 4318–4324 (2000).
59.Sawai, Y., Takimoto, B., Nabika, H., Ajito, K., Murakoshi, K., "Arrayed on a Solid Surface Using Surface-Enhanced Raman Scattering," J. Am. Chem. Soc., 129, 1658–1662 (2007).
60.Hong Wei, Feng Hao, Yingzhou Huang, Wenzhong Wang, Peter Nordlander, and Hongxing Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Letters 8, 2497-2502 (2008).
61.江正宏,「三維奈米銀球殼對之表面電漿效應分析」,清雲科技大學,碩士論文,民國一百年
62.Y.-F. Chau ,「Surface plamon effects excited by the dielectric hole in a silver-shell
Nanospherical pair」, Plasmonics, 4:253-259(2009)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔