(3.230.154.160) 您好!臺灣時間:2021/05/07 17:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉民鈞
研究生(外文):Min-Jun Liu
論文名稱:光子晶體光纖雙折射之特性分析
論文名稱(外文):Analysis of the properties of birefringence in photonic crystal fiber
指導教授:周趙遠鳳
指導教授(外文):Yuan-Fong Chau
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:91
中文關鍵詞:雙折射光子晶體光纖
外文關鍵詞:birefringentphotonic crystal fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩大主題:
主題一針對四種不同型式的纖核改變空氣孔大小與其旋轉方向的變化進行研究,我們可以發現雙折射差經由結構參數的變換之下,發現Type 3的雙折射差最高,我們純粹以理論分析的角度來探討這四種結構,故橢圓形光子晶體光纖經由改變纖衣最內層結構雖然能夠提升雙折射差,但是在製程上是較一般的光纖複雜,故希望結合圓形空氣孔(纖衣部分)以及橢圓形空氣孔(纖核部分),來破壞結構的對稱性,達到提升雙折射的目的。
主題二承續主題一的研究分析了Case A-Case M等14種不同結構的光子晶體光纖,比較他們之間的雙折射差與模式損耗。由模擬結果我們選出其中雙折射差最大與模式損耗最低的結果,我們發現Case B在纖衣的空氣孔直徑dc=0.9Λ的時候,雙折射可到達B=9.475×10-3,是原來纖衣為圓形空氣孔且纖核不做任何處理的8.275倍。但其缺點為模場分為上、下兩面,導致能量傳播之資訊量受到限制,故要到達場型能夠集中在核心部分,而且又得到比較高的雙折射差,如果說我們中間需要雙模特性,建議採用CASE D與K CASE,其雙折射差分別可到達7.18×10-3與7.535×10-3。


This thesis is divided into two topics:
Topic 1 presents a numerical study of high birefringence induced by four types (Type 1-4) of different size of elliptical air holes in photonic crystal fibers (PCFs). The numerical simulation is carried out by using the finite element method. The statistical correlations between the birefringence and the various parameters are obtained. Based on our results, the birefringence is found to be largely dependent on the variation of the normalized frequency, size ratio, effective area of the circular and elliptical air holes and the ring number of cladding. Two of our suggested structures, Type 1 and Type 3, can considerably enhance the birefringence in PCFs leading to values as high as 7.697×10-3 and 8.002×10-3, respectively, which are much higher than that obtained by a conventional step-index fiber.
Topic 2 presents a numerical study of high birefringence induced by fourteen cases (case A-M) of the same size of circular air-holes fiber cladding and different types of elliptical or circular air holes in fiber core. The numerical simulation is also carried out by using the finite element method. Results show that case B can be achieved to a value of B=9.475×10-3, which is much higher than that of case A. Two of our suggested structures, case D and case D, which can considerably enhance the birefringence in PCFs leading to values as high as 7.18×10-3 and 7.535×10-3, respectively, which are also much higher than that obtained by a conventional step-index fiber.


中文摘要...................................I
英文摘要...................................II
誌謝......................................III
目錄......................................IV
表目錄....................................VI
圖目錄....................................VII
第一章 緒論................................1
1.1 前言...........................1
1.2 光子晶體簡介.....................2
1.3光子晶體光纖簡介...................5
1.4研究動機與文獻回顧..................6
1.5本文架構...........................8
第二章 數值理論................................9
2.1光纖傳播理論.................................9
2.2有限元素法...................................12
2.2.1基本概念................................12
2.2.2形狀函數.................................13
2.2.3內插函數..................................14
2.2.4有限元素法計算光子晶體光纖....................16
2.2.5完美匹配層..................................19
第三章 光子晶體光纖特..................................24
3.1單模特性..........................................24
3.2雙折特性..........................................25
3.3光纖損耗..........................................25
第四章 主題一:四種型態之圓形空氣孔結合橢圓形空氣孔光子晶體光纖雙折射特性分析................................................27
4.1前言.............................................27
4.2數值方法..........................................28
4.3模擬結果與討論.....................................28
4.4本章小結..........................................36
第五章 主題二:圓形空氣孔高雙折射光子晶體光纖設計............37
5.1前言..............................................37
5.2模擬方法與數值模型...................................37
5.3結果與討論..........................................37
5.4本章小結............................................85
第六章 結論.............................................86
參考文獻................................................87
簡歷....................................................92


[1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, Phys. Rev. Lett. 58, 2486 (1987).
[3] E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).
[4]欒丕綱、陳啓昌,光子晶體—從蝴蝶翅膀到奈米光子學,五南出版社,民國94年。
[5]C. Luo, S.G. Johnson, D.J. Joannopoulos, amd J.B. Pendry, “All-angle negativerefraction without negative effective index,” Phys, Rev. B 65, 201104 (2002).
[6]P. St. J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
[7] J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[8]J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell and J. p. de Sandro, “Large mode area photonic crystal fiber.” Electro.Lett., vol.34, pp.1347-1348, June 1998.
[9]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks,and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett., vol. 25, pp.1325-1327, Sep. 2000.
[10]W. J .Wadsworth ,et al. High power air-clad photonic crystal fibre laser. Optics Express, 2003, 11(1):48-53.
[11] J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their application.”J. Lightwave Technol., 1986, 4 (8), pp.1071~1089
[12]A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Melin, S. Lempereur, D. Pagnoux, and P. Roy “Theoretical and Experimental Study of theBirefringence of a Photonic Crystal Fiber.” LIGHTWAVE TECHNOLOGY.,2003, VOL. 21.NO.2
[13] Chun-Liu Zhao, Xiufeng Yang, Chao Lu, Wei Jin, and M. S. Demokan “Temperature-Insensitive Interferometer Usinga Highly Birefringent Photonic Crystal Fiber Loop Mirror.” IEEE PHOTONICS TECHNOLOGY.,2004, VOL. 16, NO. 11
[14]Daru Chen “Nanostructured Photonic Crystal Fiber with Ultra-high Birefringence” IEEE Zhejiang University.,2006, 0-7803-9774
[15]Lei Yao, Shuqin Lou, Hong Fang, Tieying Guo, Honglei Li, Shuisheng Jian “Tailoring confinement losses of photonic crystal fibers” Beijing Jiaotong University.,2007
[16]Hongda Tian, Zhongyuan Yu, Lihong Han, and Yumin Liu “Birefringence and Confinement Loss Properties in Photonic Crystal Fibers Under Lateral Stress” IEEE PHOTONICS TECHNOLOG..,2008, VOL. 20, NO. 22
[17]Peng Song, Yanrong Tong, Xinlian C “A Novel High Birefringence Photonic Crystal Fiber with Squeezed Elliptical Holes”BMEI., 2010, 978-1-4244-6498
[18]Soan Kim, Chul-Sik Keeand Chung Ghiu Lee “Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion.” OSA ., 2009, 17, OPTICS EXPRESS 7952
[19]周趙遠鳳,「光學」,儒林圖書有限公司,台北,民國九十八年十月。
[20]張維群,「電磁學」,全威圖書有限公司,台北,民國九十八年三月。
[21]王勖成,邵敏,「有限元素法-基本原理與數值方法」,亞東書局,新竹,民國七十九年。
[22]翁志勳,「有限元素分析法分析光子晶體光纖」,中華大學,碩士論文,民國九十一年。
[23]王勖成,「有限單元法」,清華大學出版社,北京,民國九十八年。
[24]K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation methodbased on a finite element scheme: application to photonic crystal fibers” , IEEE Journal ofQuantum Electronics, 38(7), pp. 927-933, 2002.
[25] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves” ,Journal of Computational Physics, 114, pp. 185-200, 1994.
[26]Y. Tsuji, M. Koshiba, “Guided-mode and leakymode analysis by imaginary distance beampropagation method based on finite element scheme” , Journal of Lightwave Technology,18(4), pp. 618-623, 2000.
[27]黃介銘,「以有限元素法分析光子晶體光纖之模態特性」,國立台灣大學,碩士論文,民國九十四年。
[28]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks,and P. St. J. Russell, “Highly birefringent photonic crystal fibers” , Opt. Lett., 25(18), pp.1325-1327, Sep. 2000.
[29]張偉剛,U光纖光學原理及應用U,南開大學出版社,天津,民國九十七年四月。
[30]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks,and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett., vol. 25, 1325-1327, 2000.
[31]Y. Jung, S. R. Han, Soan Kim, U. C. Paek, and K. Oh," Versatile control of geometricbirefringence in elliptical hollow optical fiber" ,Opt. Lett., vol. 31, 2681-2683, 2006.
[32]P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,” IEEE Trans. Microwave Theory and Techniques 23, 421–429 1975.
[33]T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly Single-mode Photonic Crystal Fiber,” Opt. Lett. 22, 961–963,1997.
[34]C. J. S. de Matos and J. R. Taylor, “Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier,” Opt. Express 12, 405–409 2004.
[35]F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402, 2002.
[36]J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089, 1986.
[37]M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495–503, 2001.
[38]K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photonics Technol. Lett. 14, 1291–1293, 2002.
[39]A. Hochman and Y. Leviatan, “Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins,” Opt. Express 13, 6194-6201, 2005.
[40]Y.-F. Chau, H.-H. Yeh, D. P. Tsai, Jpn. J. Appl. Phys.46,L1048, 2007.
[41]Y.-S. Sun, Y.-F.Chau, H.-H.Yeh, T.-J.Yang, D. P. Tsai, Appl. Opt. 46, 5276, 2007.
[42]Yuh-Sien Sun, Yuan-Fong Chau, Han-Hsuan Yeh, Din Ping Tsai, to be published in Jpn. J. Appli. Phys. 47, 3755, 2008.
[43]M. J. Steel and R. M. Osgood, Jr, Opt. Lett. 26, 229,2001.
[44Daru. Chen and Linfang Shen, J. Lightwave Technol. 25 ,2700, 2007.
[45]Daru. Chen and Linfang Shen, IEEE Photon. Technol. Lett., 19. 185, 2007.
[46]T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, IEEE Photon. Technol. Lett. 13, 588, 2001.
[47]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, P. St. J. Russell, Opt. Lett. 25,1325, 2000.
[48]T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen, IEEE Photon. Technol. Lett. 13, 588, 2001.
[50]Partha Roy Chaudhuri, Varghese Paulose, Chunliu Zhao Chao Lu, IEEE Photon. Technol. Lett., 16,1301, 2004.
[51]J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, Opt. Lett.21,1547, 1996.
[52]Vito Mocella, Opt. Express 13, 1361, 2005.
[53]A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, Opt. Lett. 24, 276,1999.
[54]D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, J. Lightwave Technol. 17, 2078 ,1999.
[55]Z. Zhu and T. G. Brown, Opt. Commun. 206, 333, 2002.
[56]Z. Zhu and T. G. Brown, Opt. Express 10, 853,2002.
[57]F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 ,2000.
[58]Z. Zhu and T. G. Brown, Opt. Lett. 28, 2306-2308, 2003.
[59] Masashi Eguchi and Yasuhide Tsuji” Single-mode single-polarization holey fiber using anisotropic fundamental space-fiolling mode” 2112 OPTICS LETTERS.Vol.32,No 15 .August 1,2007


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔