跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:温欣旻
研究生(外文):Hsin-Min Wen
論文名稱:非線性系統之適應性遞迴模糊小腦模型控制器設計
論文名稱(外文):Adaptive Recurrent Fuzzy Cerebellar Model Articulation Controller Design for a Class of Nonlinear Systems
指導教授:彭椏富
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:77
中文關鍵詞:小腦模型控制器步階迴歸控制模糊小腦模型控制器遞迴模糊小腦模型控制器李阿普諾夫穩定定理混沌系統非線性系統強健控制
外文關鍵詞:backstepping controlrobust controlrecurrent fuzzy cerebellar model articulationcontrollerLyapunov stability analysisTaylor linearizationrobust control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個適應性智慧型間接控制系統為主架構,並應用於混沌系統與非線性系統之追蹤控制上。本論文所設計的適應性智慧型間接控制系統是由兩個系統共同組成,其一是以步階迴歸控制來做為主要控制器,並利用模糊小腦模型控制器網路與遞迴模糊小腦模型控制器網路來近似系統的動態模型,接著將利用一個強健性 控制器來實現系統的強健性,其目的是設計用來削弱剩餘近似誤差、外部干擾之預期衰減程度。此外,適應性智慧型間接控制系統的所有線上適應性學習法則,均根據Lyapunov穩定理論、泰勒線性化技術、步階迴歸控制技巧和強健性 控制理論加以分析推導,使得控制系統的追蹤性能與穩定性可以得到保證。最後,藉由Duffing-Holmes混沌系統、Genesio混沌系統、倒單擺系統和Chua’s混沌系統的追蹤控制模擬結果,來證明本論文所提出之控制系統架構能夠有效的達到良好的追蹤性能與強健性。

In this thesis, an adaptive intelligent indirect control system is developed for the uncertain nonlinear systems. This proposed control system is composed of two systems. One is a backstepping control system utilized as the main controller, in which an adaptive recurrent fuzzy cerebellar model articulation controller neural network is designed to identify the dynamics of the system models. Another one is a robust controller utilized to achieve system’s robust characteristics, which is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the adaptive intelligent indirect control system are derived based on the Lyapunov stability analysis, the Taylor linearization technique, backstepping control technique and control theory, so that the stability of the closed-loop system and tracking performance can be guaranteed. Finally, the proposed control system is applied to control a Duffing-Holmes chaotic system, a Genesio chaotic system, an inverted pendulum system and Chua’s chaotic system. From the simulation results, it is verified that the proposed control scheme can achieve favorable tracking performance for these nonlinear systems.

目 錄
中文摘要.............................................. i
英文摘要.............................................. ii
誌謝.................................................. iii
目錄.................................................. iv
圖目錄................................................ vi
第一章 緒論.......................................... 1
1.1 研究背景與動機................................... 1
1.2 研究方法......................................... 2
1.3 論文大綱......................................... 2
第二章 遞迴模糊小腦模型控制器網路.................... 4
2.1 原始小腦模型歷史................................. 4
2.1.1 原始小腦模型控制器網路......................... 5
2.2 模糊小腦模型控制器網路........................... 9
2.3 遞迴模糊小腦模型控制器網路....................... 12
第三章 混沌系統之適應性步階迴歸遞迴模糊小腦模型追蹤控制 ............................................. 15
3.1 混沌系統描述..................................... 15
3.2 步階迴歸控制系統設計............................. 15
3.3 適應性步階迴歸模糊小腦模型追蹤控制系統設計....... 19
3.4 模擬分析......................................... 23
3.4.1 Duffing-Holmes混沌系統與實驗................... 23
3.4.2 Genesio混沌系統與實驗.......................... 40
3.5 結論............................................. 49
第四章 非線性系統之適應性步階迴歸遞迴模糊小腦模型追蹤控制 ............................................. 50
4.1 非線性系統描述................................... 50
4.2 步階迴歸控制系統設計............................. 50
4.3 適應性步階迴歸遞迴模糊小腦模型追蹤控制系統設計... 53
4.4 模擬與分析....................................... 59
4.4.1 倒單擺系統模擬................................. 60
4.4.2 Chua’s chaotic系統模擬........................ 65
4.5 結論 ............................................. 72
第五章 結論.......................................... 73
參考文獻.............................................. 74



參考文獻
[1]賴祥偉,「非線性不確定系統之智慧型直接適應控制」,清雲科技大學,碩士論文,民國99年。
[2]王惠美,「適應性步階迴歸控制之電力系統穩定器設計」,淡江大學,碩士論文,民國92年。
[3]李承翰,「小波小腦模型控制器設計及其應用」清雲科技大學,碩士論文,民國98年。
[4]杜孟奇,「應用RBF類神經網路於超音波馬達位置控制」,中央大學,碩士論文,民國90年。
[5]林明宏,「強健性小腦模型控制器之設計與應用」清雲科技大學,碩士論文,民國95年。
[6]涂漢平,「混沌系統模糊控制器的設計」,義守大學,碩士論文,國94年。
[7]陳盈男,「多變數適應性模糊 控制器之研究」,成功大學,碩士論文,民國89年。
[8]陳冠宇,「具雜訊混沌系統之控制」,中央大學,博士論文,民國97年。
[9]郭哲誠,「非線性不確定系統之智慧型間接適應控制」,清雲科技大學,碩士論文,民國99年。
[10]龔書暉,「內嵌內容可定址記憶體之 CMAC 控制器」,中正大學,碩士論文,民國89年。
[11]A. Rubaai,“ Direct adaptive fuzzy control design achieving tracking for high performance servo drives ” IEEE Transactions on Energy Conversion, Vol. 14, pp. 1199-1208, 1999.
[12]Albus, J. S.,“ A new approach to manipulator Control: The Cerebellar Model Articulation Controller (CMAC) ” Journal of Dynamic Systems, Measurement, and Control, Transactions of ASME, pp. 220-227, 1975.
[13]Albus, J. S.,“ Data storage in the Cerebellar Model Articulation Controller (CMAC) ” Journal of Dynamic Systems, Measurement and Control, Transactions of ASME, pp. 228-233, 1975.
[14]C. F. Hsu, C. M. Lin, T. T. Lee,“ Wavelet adaptive backstepping control for a class of nonlinear systems ” IEEE Transactions on Neural Networks, Vol. 17, No. 5, pp.1175-1183, 2006.
[15]C. H. Lee, W. Y. Lai, Y. C. Lin,“ A TSK-Type Fuzzy Neural Network (TFNN) Systems for Dynamic Systems Identification ” 42nd IEEE Conference on Decision and Control, Vol. 4, pp. 4002-4007, 2003.
[16]Chih-Min Lin, Chiu-Hsiung Chen,“ Adptive RCMAC sliding mode control for uncertain nonlinear systems ” Neural Computing & Applications, Vol. 15, pp. 253-267, Springer London, 2006.
[17]C. M. Lin, Y. F. Peng, C. F. Hsu,“ Robust cerebellar model articulation controller design for unknown nonlinear systems ” IEEE Transactions on Circuit and systems II: Express Briefs, Vol. 51, No. 7, pp. 354-358, 2004.
[18]C. M. Lin, Y. F. Peng,“ Adaptive CMAC-based supervisory control for uncertain nonlinear systems systems ” IEEE Transactions on systems, Man, Cybern. B, Vol. 34, No. 2, pp. 1248-1260, 2004.
[19]C. Y. Chen, C. C. Teng,“ A mode reference control structure using a fuzzy neural networks ” Fuzzy Sets and Syst. Vol. 73, pp. 291-312, 1995.
[20]C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Trans. Neural Networks, vol. 6, pp. 144-156,1995.
[21]D. Marr,“ A theory of cerebellar cortex ” J. Physiol., Vol. 202, pp. 437-470, 1969.
[22]F. L. Lewis, and V. L. Syrmos, Optimal Control. New York: John Wiley & Sons, 1995. F. J. Lin, P. H. Shen, P. H. Chou, and S. L. Yang, “TSK-type Recurrent Fuzzy Network for DSP-based Permanent Magnet Linear Synchronous Motor Servo Drive,” IEE Proc.-Electr. Power Appl., vol. 153, no. 6, pp.921-931, 2006.
[23]H. Han, C.Y. Su, Y. Stepanenko,“ Adaptive control of a class of nonlinear system with nonlinear parameterized fuzzy approximators ” IEEE Transactions on Fuzzy Systems, Vol. 9, No. 2, pp. 315-323, 2001.
[24]H. J. Shieh, K. K. Shyu,“ Nonlinear sliding-mode torque control with adaptive backstepping approach induction motor drive ” IEEE Transactions on Industrial Electronics, Vol. 46, pp. 380-389, 1999.
[25]J. Y. Choi, J. A. Farrell,“ Adaptive observer backstepping control using neural networks ” IEEE Transactions on Neural Networks, Vol. 12, pp. 1103-1112, 2001.
[26]J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[27]J. R. Noriega and H. Wang, “A direct adaptive neural-network control for unknown nonlinear systems and its application,” IEEE Trans. Neural Networks, vol. 9, pp. 27-34, 1998.
[28]J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” J. Dyn. Syst., Measurement, Contr., vol. 97, pp. 220-227, 1975.
[29]K. S. Narendra, K. Parthasarathy,“ Identification and control of dynamical systems using neural networks ” IEEE Transactions on Neural Networks, Vol. 1, No. 1, pp. 4-27, 1990.
[30]L. X. Wang, Adaptive Fuzzy Systems. and Control: Design and Stability Analysis.
Englewood Cliffs,NJ: Prentice-Hall, 1994.
[31]M. Teshnehlab, and K. Watanabe, “Self tuning of computed torque gains by using neural networks with flexible structures,” IEE Proc. Control Theory Applications, vol. 141, pp. 235-242, 1994
[32]M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design. New York: Wiely, 1995.
[33]N. Sureshbabu, J. A. Farrell,“ Wavelet-based System Identification for Nonlinear Control ” IEEE Transactions on Automatic Control, Vol. 44, pp. 412-417, 1999.
[34]R. J. Wai, C. M. Lin, Y. F. Peng,“ Robust CMAC neural network control for LLCC-resonant driving linear piezoelectric ceramic motor ” IEE Proceedings Control Theory, Vol. 150, No. 3, pp. 221-232, 2003.
[35]R. J. Wai, C. M. Lin, Y. F. Peng,“ Adaptive Hybrid Control for Linear Piezoelectric Ceramic Motor Drive Using Diagonal Recurrent CMAC Network ” IEEE Transactions on Neural Networks, Vol. 15, No. 6, pp. 1491-1506, 2004.
[36]R. J. Wai and M. C. Lee, “Intelligent optimal control of single-link flexible robot arm,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp.201-220, 2004.
[37]R. J. Wai, F. J. Lin, R. Y. Duan, K. Y. Hsieh, J. D. Lee,“ Robust fuzzy neural network control for linear ceramic motor drive via backstepping design technique ” IEEE Transactions Fuzzy Systems, Vol. 10, pp. 102-112, 2002.
[38]W. Y. Wang, M. L. Chan, C. C. J. Hsu, T. T. Lee, “ tracking-based sliding mode controller for uncertain nonlinear systems via an adaptive fuzzy-neural approach ” IEEE Transactions on Systems, Man, and Cybern., Vol. 32, No. 4, pp. 483-492, 2002.
[39]Y. F. Peng, C. F. Hsu, C. M. Lin, C. J. Kao,“ Robust CMAC backstepping longitudinal control of vehicle platoons ” IEEE International Conference on Networking, Sensing and Control (ICNSC), Vol. 1, pp. 571-576, 2004.
[40]Y. F. Peng, Ming-Hung Lin, Chih-Hui Chiu, Chih-Min Lin, “ Development of Adaptive Intelligent Backstepping Tracking Control for Uncertain Chaotic Systems ” Industrial Electronics, IEEE Transactions on Industrial Electronics ,Vol. 4, pp. 2037-2043, 2007.
[41]Y. F. Peng,“ Robust intelligent backstepping tracking control for uncertain nonlinear chaotic systems using control technique ” Chaos, Solitons & Fractals, Vol. 41, No. 4, pp. 2081-2096, 2009.
[42]Y. G. Leu, W. Y. Wang, T. T. Lee, “ Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems ” IEEE Transactions on Robotic Automatic, Vol. 15, No. 5, pp. 805-817, 1999.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊