(3.230.143.40) 您好!臺灣時間:2021/04/21 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭凱中
研究生(外文):Cheng,Kai-Chung
論文名稱:長波長量子型紅外線影像器偵檢品質研究
論文名稱(外文):Performance Analysis for Long-wave Infrared Quantum Well Thermal Imagers
指導教授:陳子江陳子江引用關係
指導教授(外文):Chen,Tzu-Chiang
口試委員:林瑞明杜博仁謝輝煌湯相峰
口試委員(外文):Lin,Jui-MingTu,Po-JenHsieh,Hui-HuangTang,Hsiang-Feng
口試日期:2013-05-16
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:電子工程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:熱像機雜訊等效溫差夜視熱像處理模型調製轉換函數最小可分辨溫差
外文關鍵詞:Thermal imagernoise equivalent difference temperature (NEDT)night vision thermal and image processing (NVThermIP)modulation transfer function (MTF)minimum resolvable temperature difference (MRTD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文我們運用雜訊等效溫差理論、熱像模型建模及最佳化偵測性能的研究,以分析各階段長波長量子型熱像機偵檢品質。任何偵測系統自設計到成品均須透過各式各樣的驗證步驟以確認規格是否符合需求並避免成本浪費,所以藉由各量測及驗證成果,回饋並調整製造熱像系統的各項參數以滿足規格需求,使得製程、整合與調校最佳化並達到節約成本的目的。
本論文的研究重點區分三部分:第一,透過熱像機於單乙型偵檢器各項量測結果的推導比較,得知雜訊等效溫差公式於測試環境下的可用性,此驗證將可提供系統設計者藉由此法則以預測熱像機產品完成時的雜訊等效溫差。第二,運用夜視熱像處理性能模型比較熱像機相關參數-基本參數、三維雜訊、調製轉換函數,得知調製轉換函數對於最小可分辨溫差偵測精準度影響最為顯著,經此驗證作為亦可得知結合調製轉換函數與熱像模型軟體相對於直接量測最小可分辨溫差,可更有效率地評估熱像機的偵測精準度。
最後運用所設計的量化控制熱像平台最佳化偵側品質,相對於舊的觀察調整熱像平台,經實驗數據顯示改善時間雜訊等效溫差自57mK下降到52mK,空間雜訊等效溫差自55.8mK下降到49.2mK,證明所提供的新軟體可以降低時間雜訊與空間雜訊。

In this thesis, we analyze the detection performance of the long-wave infrared quantum well thermal imagers by utilizing the noise equivalent difference temperature (NEDT) theory and the thermal model construction to further optimize the detective quality. For thermal detection systems, several verification processes from design to production are essential to ensure the specification requirements and avoid the cost waste. Therefore, according to the verification results of each state, we control the parameters of thermal image systems to satisfy the specification requirements. In addition, optimizing the fabrication procedures implies the cost saving.
The contributions of this thesis are described as follows. Firstly, we verify the availability of the NEDT formula for the normal environment by comparing the derivation with the measuring results from the single detector of the thermal imager. The first verification can provide a design principle to predict the reference NEDT of the completed thermal imager for system designers. Secondly, with the night vision thermal and image processing (NVThermIP) model, we verify that the modulation transfer function (MTF) significantly affects the detection precision of the minimum resolvable temperature difference (MRTD) for the completed thermal imager by comparing with the high related parameters, including basic parameters and three-dimensional noise. The second verification also interprets that combining MTF with NVTIP is more efficient to evaluate the detection precision than measuring the MRTD directly.
Finally, we propose a quantization control thermal image platform (QCTIP) to optimize the quality of detection. Compared with observation adjustment thermal image platform (OATIP), our proposed QCTIP can achieve the lower temporal noise and lower spatial noise. Experiment results show that our proposed QCTIP can improve the temporal NEDT from 57 mK to 52 mK and the spatial NEDT from 55.8 mK to 49.2 mK, compared to the OATIP, respectively.

授權書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
符號表 xiv
1. 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 4
2. 理論介紹 5
2.1 紅外線 5
2.2 單乙型光電特性 7
2.2.1 光響應度 7
2.2.2 雜訊電流 8
2.2.3 偵測度 10
2.2.4 雜訊等效溫差 11
2.3 熱像機性能模型 12
2.4 熱像機實驗室量測參數 14
2.4.1 靈敏度量測 15
2.4.2 解析度量測 23
2.4.3 人眼感知能力 26
3. 實驗方法與實驗架設 29
3.1 單乙型偵檢器量測方法與架設 29
3.1.1 電壓與電流關係量測 29
3.1.2 FTIR光響應頻譜量測實驗架設 31
3.1.3 絕對光響應量測實驗架設 33
3.2 NVThermIP熱像模型實驗方法 34
3.3 實驗室熱像機量測系統架構與方法 35
3.3.1 實驗室量測架構 35
3.3.2 實驗室量測方法 38
4. 實驗結果分析 39
4.1 單乙型偵檢器與熱像機雜訊等效溫差比較 39
4.1.1 單乙型偵檢器量測 39
4.1.2 熱像機量測 47
4.1.3 雜訊等效溫差比較分析 47
4.2 實驗室量測回饋熱像性能模型比較 48
4.2.1 基本參數測試結果 48
4.2.2 輸入實驗室所量測MTF測試結果 50
4.2.3 輸入實驗室所量測3D雜訊測試結果 53
4.2.4 結果分析比較 55
4.3 熱像系統最佳化的實驗探討 57
4.3.1 熱像系統最佳化參考依據之設計 57
4.3.2 最佳化參考依據之驗證 60
4.3.3 熱像系統最佳化參數比較 64
4.3.4 新舊熱像系統參數最佳化品質比較分析 65
5. 結論 69
參考文獻 70
附錄A 73
附錄B 75
自傳 96

[1]Defense Acqusition University, Systems Engineering Fundamentals, Defense Acqusition University Press, Virginia, pp. 65-70, 2001.
[2]http://www.pro-therm.com/images/infrared_basics_figure2_large.gif (2012.6.6)
[3]Desai, U. B., “Infrared Detectors,” M. Tech Credit Seminar Report, Bombay, Indian, pp. 3-6, 2004.
[4]廖崇吉,“量子點紅外線偵檢器之研製”,碩士論文,國防大學電子工程研究所,桃園,2006。
[5]顏順隆,“紅外線尋標模組內量子點偵檢器之研製及光電特性分析與模擬”, 碩士論文,國防大學電子工程研究所,桃園,2005。
[6]Rehm, R., Schneider, H., Schonbein, C., and Walther, M., “Noise Current Investigation of G-R Noise Limited and Shot Noise Limited QWIPs,” Elsevier Science B, Vol. 7, pp. 124-129, 2000.
[7]Mohamed, H., Manijeh, R., Handbook of Detection Technologies, Elsevier Science Ltd, Oxford. pp. 17-18, 2002.
[8]Dereniak, E. L., Boreman, G. D., Infrared Detectors and Systems, A Wiley-Interscience Publication, New York, pp. 200-202, 526-539, 1996
[9]Ramirez, D. A., “Focal Plane Arrays (FPAs) Operation Principles, ” New Mexico State University, U.S.A., pp. 1, 2006.
[10]蘇峰鈺,“低維度雙波段量子井偵檢元件光電特性之研究”,碩士論文,國防大學電子工程研究所,桃園,2010。
[11]莊沛婷,“紅外線量子型焦平面陣列偵檢器之影像驗證”,碩士論文,國防大學電子工程研究所,桃園,2010。
[12]Steven K. Moyer , “Modeling Challenges of Advanced of Advanced Thermal Imagers,” Ph.D. Dissertation, Georgia Institute of Technology, pp. 123, 2005.
[13] G.B. Ferrari, “Definition of nominal static range performance for thermal imaging systems” North Atlantic Treaty Organization, STANAG No. 4347, 1995.
[14] G.B. Ferrari, “Measurement of the minimum resolvable temperature difference (MRTD) of thermal cameras,” North Atlantic Treaty Organization, STANAG No. 4349, 1995.
[15] G.B. Ferrari, “Calculation of minimum resolvable themprature difference (MRTD) for thermal imaging systems” North Atlantic Treaty Organization, STANAG No. 4350, 1995.
[16]U.S. Army Night Vision and Electronic Sensors Directorate, Night Vision Thermal and Image Processing Performance Model User’s Manual, U.S. Army Night Vision and Electronic Sensors Directorate, pp. 3, 2009.
[17]張建奇、王曉蕊,光電成像系統建模及性能評估理論,西安電子科技大學出版社,西安,第178-185頁,2010。
[18]Krzysztof Chrzanowski, Testing Thermal Imagers, Military University of Technology, 00-908 Warsaw, Poland, Georgia Institute of Technology, pp. 164, 2010.
[19]黃嘉嘉,“長波段量子井紅外線熱像機品質驗證研究”,碩士論文,國防大學電子工程研究所,桃園,2012。
[20]U.S. Army Night Vision and Electronic Sensors Directorate, Night Vision Thermal and Image Processing Performance Model User’s Manual & Reference Guide, U.S. Army Night Vision and Electronic Sensors Directorate, pp. 123, 2001.
[21]“Discussion of IR Testing Using IRWindows TM2001,” Santa Barbara Infrared, Inc. (SBIR), FLIR Systems, Inc., pp. 26, 2002.
[22]潘世耀,“取像透鏡裝置之調變轉儀函數量測系統的研討:以使用不同擴散函數量測方法為例”,碩士論文,國立臺灣師範大學機電科技研究所,台北,2007。
[23]葉宗翰,“選擇性蝕刻製程技術對紅外線偵檢元件光電特性之影響”,碩士論文,國防大學電子工程研究所,桃園,2011。
[24]Richard H. V., Eddie J., Jon H. and Mel F., The Targeting Task Performance (TTP) Metric, U.S. Army Night Vision and Electronic Sensors Directorate, pp. 134, 2006.
[25]Levine B. F., Quantum-well Infrared Photodetectors, American Institute of Physics, Vol. 74, No. 8, pp. 23-32, 1993.
[26]http://thermofluids.sdsu.edu/testhome/javaapplets/planckRadiation/blackbody.html(2013,5,9)
[27] Costard, E. , “THALES long wave QWIP thermal imagers,” THALES Report, Sri Lanka, pp.26, 2006.
[28]http://flir.custhelp.com/app/answers/detail/a_id/128/kw/how%20is%20nedt%20measured/sno/1(2013,5,9)
[29]Eker S.U., Arslan Y., Besikci C., “High speed QWIP FPAs on InP substrates,” Infrared Physics & Technology, Vol. 54, pp. 5-6, 2011.
[30]Indigo Systems Inc., ISC9705 Standard 320 Specification, Indigo Systems, Inc., USA,, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔