跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡欣芝
研究生(外文):Hsin Chih Tsai
論文名稱:以陰離子聚合法合成含有可控制尺寸之奈米金顆粒高分子複合材料
論文名稱(外文):Preparation of Polystyrene Composite With Controllable Gold Nanoparticle Size via Anionic Polymerization
指導教授:蔣見超
指導教授(外文):Raymond Chien-Chao Tsiang
口試委員:林江珍戴憲弘陳志勇
口試委員(外文):Jiang-Jen LinShenghong A. DaiChen-Yung Chen
口試日期:2013-07-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:陰離子聚合聚苯乙烯奈米金顆粒
外文關鍵詞:anionic polymerizationpolystyrenegold nanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是以陰離子聚合法來合成單邊以硫甲基官能化之聚苯乙烯高分子以及雙邊以硫甲基和硫醇基官能化之聚苯乙烯高分子,合成步驟大致為利用正丁基鋰單邊活化二甲基硫形成單邊活化之錯離子,再加入苯乙烯單體進行聚合反應,最後以環硫乙烷進行末端官能化,進一步利用硫原子來吸附從溶液中還原出的金顆粒,最後探討金顆粒還原後的大小差異,除了探討不同官能基對於金顆粒的還原效果差異以外,同時也探討高分子的含量對金顆粒還原之影響,我們分別使用GPC、1H-NMR、13C-NMR、EDS、TEM、UV-Vis、TGA以及DSC進行高分子的結構以及詳細的物性分析。
This work mainly takes advantage of anionic polymerization to synthesize SCH3-polystyrene and SCH3-polystyrene-SH. Basically speaking,we use n-butyllithium to activate one side of dimethyl sulfide to form activated complex ion. Then we add styrene monomers to proceed polymerization. Finally, we use ethylene sulfide as end-functionalization agent to quench the polymer chain. Most importantly, we make use of the sulfur atom to form gold nanoparticle/ polystyrene nanocomposite with the addition and reduction of gold solution. We observe the effect on the size of gold nanoparticles of not only the amount of polymer but also the type of functional group. The composite is analyzed by GPC、1H-NMR、13C-NMR、EDS、TEM、UV-Vis、TGA and DSC for details.
中文摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XII
第一章 緒論 1
第二章 文獻回顧 4
2.1 陰離子聚合反應原理[9] 4
2.1-1 起始劑種類與起始反應 5
2.1-2 鏈成長反應 12
2.1-3 鏈轉移反應 14
2.1-4 無終止反應特性 15
2.2 高分子硫醇官能基與金的自組裝薄膜 16
第三章 實驗內容 21
3.1藥品 21
3.2實驗設備與分析儀器 23
3.3儀器分析 24
3.3-1 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC) 24
3.3-2 調幅式微差掃描熱分析儀 (Modulated Differential Scanning Calorimetry,MDSC) 26
3.3-3 熱重分析儀(Thermogravimetric Analyzer,TGA) 32
3.3-4 核磁共振儀(Nuclear Magnetic Resonance Spectrometer,NMR) 32
3.3-5 紫外光-可見外吸收光譜儀(UV/Vis spectroscopy, UV/Vis) 33
3.3-6 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 35
3.3-7 能量散佈分析儀(Energy Dispersive X-ray Spectrometer,EDS) 37
3.4實驗步驟 39
3.4-1 SCH3-Polystyrene以及高分子鏈末端官能化之製備[27-29] 39
3.4-5 官能化高分子與金離子溶液形成外層包覆高分子之金奈米顆粒[45] 42
第四章 結果與討論 44
4.1 前言 44
4.2聚苯乙烯分子量分析 46
4.3 聚苯乙烯的官能化結構鑑定 48
4.3-1 1H-NMR氫譜分析 48
4.3-2 13C-NMR碳譜分析 50
4.3-3 EDS元素分析 52
4.4 官能化高分子與金粒子溶液形成外層包覆高分子之金奈米顆粒 57
4.4-1 加入不同重量但同樣分子量的高分子對其所包覆之金顆粒大小之影響 58
4.4-2加入不同分子量但同樣重量的高分子對其所包覆之金顆粒大小之影響 70
4.4-3分散度計算 72
4.4-4與文獻比較 74
4.5 UV-Vis光譜分析 78
4.5-1 加入不同重量但同樣分子量的高分子所吸附之奈米金顆粒之UV-Vis 吸收光譜 78
4.5-2加入不同分子量但同樣重量的高分子所吸附之奈米金顆粒之UV-Vis 吸收光譜 82
4.6 TGA熱性質分析 85
4.7 DSC熱性質分析 88
第五章 結論與未來展望 88
參考文獻 93

[1]Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃. Chemistry Letters, (2), 405-408.
[2]Helcher, H. H. (1718). Aurum Potabile oder Gold-Tinctur: Dessen Praeparation Daß sie sicher, Samt des Goldes Vortrefflichkeit und Analogie mit unserm Coerper, Würckung und Gebrauch curative so wohl als praeservative,..., geanwtwortet wird. Kloß.
[3]Napper, Donald H. Polymeric stabilization of colloidal dispersions. Vol. 7. London: Academic Press, 1983.
[4]Bonet, F., Delmas, V., Grugeon, S., Herrera Urbina, R., Silvert, P. Y., & Tekaia-Elhsissen, K. (1999). Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostructured materials, 11(8), 1277-1284.
[5]Hayat, M. A. (1989). Colloidal gold. Principles, methods, and applications.San Diego, etc, 2.
[6]Cole, D. H., Shull, K. R., Baldo, P., & Rehn, L. (1999). Dynamic properties of a model polymer/metal nanocomposite: gold particles in poly (tert-butyl acrylate). Macromolecules, 32(3), 771-779.
[7]Ohno, K., Koh, K. M., Tsujii, Y., & Fukuda, T. (2002). Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules, 35(24), 8989-8993.
[8](a) Furukawa, K., Ebata, K., & Fujiki, M. (2000). One‐Dimensional Silicon Chain Architecture: Molecular Dot, Rope, Octopus, and Toroid. Advanced Materials, 12(14), 1033-1036. (b) Furukawa, K., & Ebata, K. (2000). Preparation and single molecule structure of electroactive polysilane end-grafted on a crystalline silicon surface.Applied Physics Letters, 77(26), 4289-4291.
[9]Hsieh, H. L.; Quirk, R. P., Anionic Polymerization. Principles and Practical Applications, Marcel Dekker: New York, 1996.
[10]Ziegler, K., Dersch, F., & Wollthan, H. (1934). Alkali organic compounds XI. Mechanism of polymerization of unsaturated hydrocarbons by alkali metal and alkali alkyls. Justus Liebigs Ann. Chem, 511, 13-44.
[11]Szwarc, M. (1956). Living'polymers. Nature, 178, 1168-1169.
[12]Bauer, B. J., & Fetters, L. J. (1978). Synthesis and dilute-solution behavior of model star-branched polymers. Rubber Chemistry and Technology, 51(3), 406-436.
[13]Graessley, W. W. (1982). Effect of long branches on the temperature dependence of viscoelastic properties in polymer melts. Macromolecules,15(4), 1164-1167.
[14]Grest, G. S., Fetters, L. J., Huang, J. S., & Richter, D. (1996). Star polymers: experiment, theory and simulation. Adv. Chem. Phys, 94, 67.
[15]Milner, S. T. (1994). Chain Architecture and Asymmetry in Copolymer Microphases . Macromolecules, 27(8), 2333-2335.
[16]Offord, D. A., & Griffin, J. H. (1993). Kinetic control in the formation of self-assembled mixed monolayers on planar silica substrates. Langmuir, 9(11), 3015-3025.
[17]Fan, H., Zhou, Y., & Lopez, G. P. (1997). Stepwise assembly in three dimensions: Preparation and characterization of layered gold nanoparticles in porous silica matrices. Advanced Materials, 9(9), 728-731.
[18]Mulvaney, P., Giersig, M., Ung, T., & Liz‐Marzán, L. M. (1997). Direct observation of chemical reactions in silica‐coated gold and silver nanoparticles. Advanced Materials, 9(7), 570-575.
[19]Sato, T., Ahmed, H., Brown, D., & Johnson, B. F. (1997). Single electron transistor using a molecularly linked gold colloidal particle chain. Journal of applied physics, 82(2), 696-701.
[20]Majumdar, D., Kodas, T. T., & Glicksman, H. D. (1996). Gold particle generation by spray pyrolysis. Advanced Materials, 8(12), 1020-1022.
[21]Foss Jr, C. A., Hornyak, G. L., Stockert, J. A., & Martin, C. R. (1994). Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. The Journal of Physical Chemistry, 98(11), 2963-2971.
[22]Badia, A., Gao, W., Singh, S., Demers, L., Cuccia, L., & Reven, L. (1996). Structure and chain dynamics of alkanethiol-capped gold colloids. Langmuir,12(5), 1262-1269.
[23]Badia, A., Demers, L., Dikinson, L., Morin, F. G., Lennox, R. B., & Reven, L. (1997). Gold-Sulfur Interaction in Alkylthiol Self-Assembled Monolayers Formed on Gold Nanoparticles Studied by Solid-State NMR. J. Am. Chem. Soc., 119(45), 11104-11105.
[24]Reven, L. (1994). Solid-state NMR studies of supported organometallics.Journal of molecular catalysis, 86(1), 447-477.
[25]Ebata, K., Furukawa, K., & Matsumoto, N. (1998). Synthesis and Characterization of End-Grafted Polysilane on a Substrate Surface. J. Am. Chem. Soc., 120(29), 7367-7368.
[26]Ebata, K., Furukawa, K., & Matsumoto, N. (1999). An Isolated Silicon Single Chain End-Grafted Onto A Substrate Surface. Appl. Phys. Lett., 75(6), 781-783.
[27]Peterson, D. J. (1967). Preparation and reactions of some alkylthiomethyllithium compounds. The Journal of Organic Chemistry, 32(6), 1717-1720.
[28]Corey, E. J., & Seebach, D. (1966). Phenylthiomethyllithium and Bis (phenylthio) methyllithium. The Journal of Organic Chemistry, 31(12), 4097-4099.
[29]Gilman, H., & Webb, F. J. (1940). Lateral metalation of methyl phenyl sulfide. Journal of the American Chemical Society, 62(4), 987-988.
[30]Yockell-Lelièvre, H., Desbiens, J., & Ritcey, A. M. (2007). Two-dimensional self-organization of polystyrene-capped gold nanoparticles. Langmuir, 23(5), 2843-2850.
[31]Shan, C., Li, F., Yuan, F., Yang, G., Niu, L., & Zhang, Q. (2008). Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolyte-functionalized ionic liquid. Nanotechnology, 19(28), 285601.
[32]Hvolbæk, B., Janssens, T. V., Clausen, B. S., Falsig, H., Christensen, C. H., & Nørskov, J. K. (2007). Catalytic activity of Au nanoparticles. Nano Today, 2(4), 14-18.
[33]Ashter, A., Tsai, S. J., Lee, J. S., Ellenbecker, M. J., Mead, J. L., & Barry, C. F. (2010). Effects of nanoparticle feed location during nanocomposite compounding. Polymer Engineering & Science, 50(1), 154-164.
[34]Silvert, P. Y., & Tekaia-Elhsissen, K. (1995). Synthesis of monodisperse submicronic gold particles by the polyol process. Solid State Ionics, 82(1), 53-60.
[35]Stouffer, J. M., & McCarthy, T. J. (1988). Polymer monolayers prepared by the spontaneous adsorption of sulfur-functionalized polystyrene on gold surfaces. Macromolecules, 21(5), 1204-1208.
[36]Stouffer, J. M., & McCarthy, T. J. (1988). Polymer monolayers prepared by the spontaneous adsorption of sulfur-functionalized polystyrene on gold surfaces. Macromolecules, 21(5), 1204-1208.
[37]Corbierre, M. K., Cameron, N. S., Sutton, M., Mochrie, S. G., Lurio, L. B., Ruhm, A., & Lennox, R. B. (2001). Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. Journal of the American Chemical Society, 123(42), 10411-10412.
[38]Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature, 241(105), 20-22
[39]Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc., Chem. Commun., (7), 801-802.
[40]Neumann, O., Urban, A. S., Day, J., Lal, S., Nordlander, P., & Halas, N. J. (2012). Solar Vapor Generation Enabled by Nanoparticles. ACS nano, 7(1), 42-49.
[41]Tai, Y., Yamaguchi, W., Okada, M., Ohashi, F., Shimizu, K. I., Satsuma, A., ... & Kageyama, H. (2010). Depletion of CO oxidation activity of supported Au catalysts prepared from thiol-capped Au nanoparticles by sulfates formed at Au–titania boundaries: Effects of heat treatment conditions on catalytic activity. Journal of Catalysis, 270(2), 234-241.
[42]Tai, Y., & Tajiri, K. (2008). Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Applied Catalysis A: General, 342(1), 113-118.
[43]Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews-Columbus, 104(1), 293.
[44]Haruta, M. (2003). When gold is not noble: catalysis by nanoparticles. The Chemical Record, 3(2), 75-87.
[45]Hu, C. W., Huang, Y., & Tsiang, R. C. C. (2009). Thermal and Spectroscopic Properties of Polystyrene/Gold Nanocomposite Containing Well-Dispersed Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 9(5), 3084-3091.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊