跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃家琪
研究生(外文):Huang, Chia-Chi
論文名稱:以金奈米棒及金奈米球為表面增強拉曼 散射基材之生物檢測應用
論文名稱(外文):Gold Nanorods and Gold Nanospheres as Surface-Enhanced Raman Scattering Substrates for Biodetection
指導教授:楊子萱楊子萱引用關係周禮君周禮君引用關係
指導教授(外文):Yang, Tzyy-SchiuanChau, Lai-Kwan
口試委員:楊子萱周禮君陳文龍許佳振張大釗張憲彰
口試委員(外文):Yang, Tzyy-SchiuanChau, Lai-KwanChen, WenlungHsu, ChiachenChang, Ta-ChauChang, Hsien-Chang
口試日期:2012-10-01
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:157
中文關鍵詞:金奈米棒金奈米球狗骨頭形金奈米棒表面增強拉曼光譜表面增強拉曼核殼標籤RGD 胜肽青竹絲蛇毒蛋白雨傘節蛇毒蛋白咔唑衍生物生物檢測基材
外文關鍵詞:gold nanorod (AuNR)gold nanospheredog-bone shaped gold nanorodsurface enhanced Raman spectroscopy (SERS)AuNR SERS core-shell tagsRGD (Arg-Gly-Asp) peptidesTrimeresurus stejnegeriBungarus multicinctussnake venom3,6-bis(1-methyl-4-vinylpyrazinium)carbazole diiodide (BMVC-4)biodetectionSERS substrate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:864
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
生物感測器以表面增強拉曼光譜 (surface enhanced Raman spectrum, SERS) 形式讀出,大致可區分為表面增強拉曼標籤 (SERS tags) 及免標記法 (label-free method) 兩種不同型態之應用。本研究發展這兩項不同型態的生物檢測並分三個部分介紹如下:
第一部分研究為調控金奈米棒上的十六烷基三甲基溴化铵 (cetyl- trimethylammonium bromide, CTAB) 保護層的結構,成功地發展出以單顆金奈米棒為 SERS 基材之表面增強拉曼核殼標籤。其拉曼增強效應可與金奈米球聚集體相較。核殼結構提高拉曼標籤分子之穩定性並提供生物分子修飾的額外空間。將金奈米棒拉曼核殼標籤接上探針,以修飾biotin的聚苯乙烯球作為模擬細菌,兩者鍵結後,得到拉曼標籤訊號強度約為金奈米球聚集標籤 (Nanoaggregate-embedded beads, NAEBs) 的 1/3 倍;且 6 次實驗測得訊號強度變化量為6%內。該項標籤除了既有的拉曼特徵指紋外,還兼具螢光特色,可作為二元檢測。
第二部分研究為比較多種形狀之金奈米粒子直接偵測蛋白質的能力。利用免標記法進行 20 種胺基酸、類 RGD (Arg-Gly-Asp) 胜肽與蛇毒蛋白之表面增強拉曼光譜偵測。發現其中狗骨頭形之金奈米棒具最強的拉曼增效因子。本研究首次以該 SERS 基材獲得雨傘節 (Bungarus multicinctus) 和青竹絲 (Trimeresurus stejnegeri) 蛇毒蛋白之二級結構資訊。因此以狗骨頭形之金奈米棒作為 SERS 基材可提高生物巨分子檢測靈敏度。
第三部分研究以金奈米棒表面之CTAB 在不同濃度下的不同組態的模型進一步應用於大分子 DNA 序列之檢測。利用 CTAB 之正電離子與帶負電的 Hum23 序列 (TAGGG(TTAGGG)3) 庫倫吸引力及 CTAB 組態改變,成功地偵測到濃度為2 × 10-7 M Hum23序列之訊號。此外抗癌藥物 3,6-bis(1-methyl-4-vinylpyrazinium)carbazole diiodide (BMVC-4) 與 Hum23 形成的複合物可直接吸附於金表面。比較 BMVC-4 分子與 Hum23作用前後的 SERS 光譜差異,得到BMVC-4分子的pyrazine 環會與 DNA 骨架作用。本研究建立的 CTAB 於金奈米棒表面之不同組態的模型可作為操控分析物吸附於金奈米棒之原則,使得金奈米棒更適於作為生物感測元件。

There are two biosensing approaches based on surface enhanced Raman spectroscopy (SERS): surface enhanced Raman tags (SERS tags) and label-free methods. In this study, the biosensor fabrication methodology and the signal amplification technique can be described as the following three parts:
First, the status of protective layer of cetyltrimethylammonium bromide (CTAB) on gold nanorod (AuNR) surface can be modulated by controlling the concentration of CTAB. Thus, the monodispersive SERS core-shell tag based on an AuNR was fabricated successfully. Because of the core-shell structure, the SERS tags were more stable and the outer shell can provide a larger surface area for biomoleculear immobilization. AuNR SERS core-shell tags attached to polystyrene bead which mimics bacteria via biotin–streptavidin labeling protocol were used in SERS detection. These results show that the SERS signal intensity of AuNR core-shell SERS tags is about 1/3 fold compared to that of the nanoaggregate-embedded beads (NAEBs), suggesting a strong enhancement effect from the AuNR substrate. Moreover, the SERS signal variation among six repeated measurements of the detected AuNR core-shell beads was within 6%. Besides, the AuNR core-shell SERS tag encoded with both fluorescence characteristic and Raman signatures may lead to a kind of powerful dual-mode biosensor.
Second, 5 different types of SERS substrates were fabricated and applied to detection of 20 kinds of amino acids, mimicked RGD (Arg-Gly-Asp) peptides and snake venom. The SERS efficiency of 5 different SERS substrates was compared. Among these SERS substrates, the dog-bone shaped gold nanorod exhibited excellent SERS enhancement. Furthermore, this substrate can successfully distinguish the secondary protein structure between Bungarus multicinctus and Trimeresurus stejnegeri from their collected SERS spectra. According to the SERS results of dog-bone shaped AuNRs, the present work has developed a SERS substrate suitable for biological macromolecules detection.
Third, the model of the effect of CTAB morphology on the surface properties of AuNR accompanied by varying the solution CTAB concentration was established, and this model applied to DNA sequence detection was further demonstrated. The SERS signal of Hum23 at 2 × 10-7 M resulting from the coulombic interactions between the positive charge of CTAB and negative charge of Hum23 sequence (TAGGG(TTAGGG)3) was detected successfully. Furthermore, the anticancer drug 3,6-bis(1-methyl-4-vinylpyrazinium)carbazole diiodide (BMVC-4) and Hum23 sequence can form a complex and directly absorb on AuNR surface. According to the difference SERS spectra of BMVC-4 after interacting with Hum23, the results indicate that the pyrazine ring interacts with the backbone of DNA. Thus, this model could be a protocol for controlling the analyte absorbed on the Au surface, indicating the potential of AuNRs as a substrate for SERS detection.

謝誌 I
總目錄 III
圖目錄 VIII
表目錄 XII
中文摘要 XIII
Abstract XV
第一章 緒論 1
1.1 研究背景介紹 1
1.1.1 表面增強拉曼散射光譜發展與簡述 1
1.1.2 表面增強拉曼基材 5
1.1.3 表面增強拉曼光譜應用於多重分析技術簡介 8
1.2 動機 11
1.3 目的 12
第二章 三步驟法合成表面增強拉曼核殼標籤 13
2.1 前言 13
2.2 材料與方法 15
2.2.1 材料 15
2.2.2 金奈米棒之製備 15
2.2.3 金奈米棒長軸與短軸之測量 16
2.2.4 金奈米棒生成濃度之定量 16
2.2.5 製備表面增強拉曼核殼標籤 17
2.2.6 儀器設備 18
2.2.7 自建構顯微拉曼光譜儀之架設 18
2.3 結果與討論 19
2.3.1 金奈米棒之紫外–可見光譜探討 19
2.3.2 金奈米棒表面之 CTAB 分子吸附探討 20
2.3.3 拉曼標籤分子之篩選 20
2.3.4 拉曼標籤分子濃度之控制 21
2.3.5 表面增強拉曼核殼標籤之探討 22
2.4 結論 24
第三章 直接矽源包覆合成法製作金奈米棒之表面增強拉曼核殼標籤 37
3.1 前言 37
3.2 材料與方法 39
3.2.1 材料 39
3.2.2 製備表面增強拉曼核殼標籤 39
3.2.3 儀器設備 40
3.3 結果與討論 41
3.3.1 金奈米棒之界達電位變化觀察 41
3.3.2 CTAB 分子在金表面形成微胞系統之假設 41
3.3.3 表面增強拉曼核殼標籤合成之探討 44
3.3.4 最佳化條件之表面增強拉曼核殼標籤 46
3.3.5 表面增強拉曼核殼標籤之可見光譜探討 46
3.3.6 表面增強拉曼核殼標籤之表面增強拉曼光譜圖 46
3.3.7 矽核殼之性質探討 47
3.3.8 具螢光性質之表面增強拉曼核殼標籤 48
3.3.9 利用不同長-短軸比率之金奈米棒製作表面增強拉曼核殼標籤 49
3.3.10 表面增強拉曼核殼標籤標記在擬細菌上進行生物檢測 49
3.4 結論 50
第四章 以不同形狀之拉曼基材進行二十種氨基酸、類RGD胜肽鏈 (Gly-Arg-Gly-Asp-Phe-Cys) 與蛇毒蛋白之表面增強拉曼光譜偵測 67
4.1 前言 67
4.2 材料與方法 70
4.2.1 材料 70
4.2.2 方法 70
4.2.3 儀器設備 72
4.3 結果與討論 73
4.3.1 五種金奈米粒子之光學特性 73
4.3.2 各類型金奈米粒子對二十種胺基酸之表面增強拉曼效應 73
4.3.3 半胱胺酸直接吸附五種金奈米粒子之討論 74
4.3.4 類 RGD 胜肽之表面增強拉曼光譜 74
4.3.5 青竹絲與雨傘節蛇毒蛋白直接吸附兩種金奈米粒子之顏色變化 75
4.3.6 透過表面增強拉曼光譜技術直接偵測青竹絲蛇毒蛋白 75
4.3.7 出血型蛇毒蛋白之拉曼光譜與表面增強拉曼光譜比較 76
4.3.8 透過表面增強拉曼光譜技術直接偵測雨傘節蛇毒蛋白 77
4.4 結論 78
第五章 金奈米棒偵測 DNA 端粒 G-四股結構及其與 carbazole 衍生物之作用 94
5.1 前言 94
5.2 材料與方法 96
5.2.1 材料 96
5.2.2 方法 96
5.2.3 儀器設備 97
5.3 結果與討論 98
5.3.1 藉由調控 CTAB 溶液濃度增強 Hum23之表面增強拉曼光譜 98
5.3.2 高鹽類濃度下的 BMVC-4 溶液之表面增強拉曼光譜 99
5.3.3 不同比率 (BMVC-4/Hum23) 複合物之表面增強拉曼光譜探討 100
5.3.4 比較 BMVC-4 與 Hum23 作用之 SERS 圖譜 101
5.4 結論 103
第六章 總結論與未來展望 114
第七章 文獻參考 115
論文著作 137
研討會論文 138

1.C. V. Raman and K. Krishnan, "A new type of secondary radiation," Nature 121, 501-502 (1928).
2.R. Petry, M. Schmitt, and J. Popp, "Raman spectroscopy-a prospective tool in the life sciences," ChemPhysChem 4, 14-30 (2003).
3.S. Potgieter-Vermaak, N. Maledi, N. Wagner, J. H. P. Van Heerden, R. Van Grieken, and J. H. Potgieter, "Raman spectroscopy for the analysis of coal: a review," J. Raman Spectrosc. 42, 123-129 (2011).
4.C. R. Yonzon, D. A. Stuart, X. Zhang, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Towards advanced chemical and biological nanosensors—an overview," Talanta 67, 438-448 (2005).
5.M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett. 26, 163-166 (1974).
6.D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry: Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electr. Chem. Interf. Electrochem. 84, 1-20 (1977).
7.M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99, 5215-5217 (1977).
8.P. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
9.S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
10.K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
11.A. Otto, "What is observed in single molecule SERS, and why?," J. Raman Spectrosc. 33, 593-598 (2002).
12.K. L. Wustholz, A. I. Henry, J. M. Bingham, S. L. Kleinman, M. J. Natan, R. G. Freeman, and R. P. VanDuyne, "Exploring single-molecule SERS and single-nanoparticle plasmon microscopy," in Proc. SPIE, (San Diego, CA, 2009), pp. 1-10.
13.S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, "Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment," J. Am. Chem. Soc. 133, 4115-4122 (2011).
14.E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
15.C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2005).
16.C. Yu, S.-S. Lee, C.-L. Wang, and C. R. C. Wang, "Gold nanorods: electrochemical synthesis and optical properties," J. Phys. Chem. B 101, 6661-6664 (1997).
17.P. F. Liao and A. Wokaun, "Lightning rod effect in surface enhanced Raman scattering," J. Chem. Phys. 76, 751-752 (1982).
18.L. Jensen, C. M. Aikens, and G. C. Schatz, "Electronic structure methods for studying surface-enhanced Raman scattering," Chem. Soc. Rev. 37, 1061-1073 (2008).
19.B. Nikoobakht, J. P. Wang, and M. A. El-Sayed, "Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition," Chem. Phys. Lett. 366, 17-23 (2002).
20.P. Etchegoin and E. Le Ru, "A perspective on single molecule SERS: current status and future challenges," Phys. Chem. Chem. Phys. 10, 6079-6089 (2008).
21.E. Petryayeva and U. J. Krull, "Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review," Anal. Chim. Acta 706, 8-24 (2011).
22.J. P. Camden, J. A. Dieringer, J. Zhao, and R. P. Van Duyne, "Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing," Acc. Chem. Res. 41, 1653-1661 (2008).
23.M. Moskovits, "Surface-enhanced Raman spectroscopy: a brief retrospective," J. Raman Spectrosc. 36, 485-496 (2005).
24.M. Udagawa, C.-C. Chou, J. C. Hemminger, and S. Ushioda, "Raman scattering cross section of adsorbed pyridine molecules on a smooth silver surface," Phys. Rev. B 23, 6843-6846 (1981).
25.X. Jiang and A. Campion, "Chemical effects in surface-enhanced Raman scattering: pyridine chemisorbed on silver adatoms on Rh (100)," Chem. Phys. Lett. 140, 95-100 (1987).
26.H. Wetzel and H. Gerischer, "Surface enhanced Raman scattering from pyridine and halide ions adsorbed on silver and gold sol particles," Chem. Phys. Lett. 76, 460-464 (1980).
27.S.-Y. Fu and P.-X. Zhang, "Chemical effect of chloride ions on SERS in silver sol," J. Raman Spectrosc. 23, 93-97 (1992).
28.Y.-S. Li, J. Cheng, and Y. Wang, "Surface-enhanced Raman spectra of dyes and organic acids in silver solutions: chloride ion effect," Spectrochim. Acta A Mol. Biomol. Spectrosc. 56, 2067-2072 (2000).
29.L. Jensen and G. C. Schatz, "Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory," J. Phys. Chem. A 110, 5973-5977 (2006).
30.D. P. Fromm, A. Kinkhabwala, P. J. Schuck, W. Moerner, A. Sundaramurthy, and G. S. Kino, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 61101-61109 (2006).
31.J. R. Lombardi and R. L. Birke, "Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy," J. Chem. Phys. 126, 244709-244709 (2007).
32.S. Liu, X. Zhao, Y. Li, M. Chen, and M. Sun, "DFT study of adsorption site effect on surface-enhanced Raman scattering of neutral and charged pyridine–Ag4 complexes," Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 382-387 (2009).
33.X. Zhao, S. Liu, Y. Li, and M. Chen, "DFT study of chemical mechanism of pre-SERS spectra in pyrazine–metal complex and metal–pyrazine–metal junction," Spectrochim. Acta, Part A 75, 794-798 (2010).
34.S. M. Ansar, X. Li, S. Zou, and D. Zhang, "Quantitative comparison of Raman activities, SERS activities, and SERS enhancement factors of organothiols: implication to chemical enhancement," J. Phys. Chem. Lett. 3, 560-565 (2012).
35.A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev. 27, 241-250 (1998).
36.S. M. Morton and L. Jensen, "Understanding the molecule−surface chemical coupling in SERS," J. Am. Chem. Soc. 131, 4090-4098 (2009).
37.M. M. Maitani, D. A. A. Ohlberg, Z. Li, D. L. Allara, D. R. Stewart, and R. S. Williams, "Study of SERS chemical enhancement factors using buffer layer assisted growth of metal nanoparticles on self-assembled monolayers," J. Am. Chem. Soc. 131, 6310-6311 (2009).
38.S. M. Morton, D. W. Silverstein, and L. Jensen, "Theoretical studies of plasmonics using electronic structure methods," Chem. Rev. 111, 3962-3994 (2011).
39.J.-C. Bian, F. Yang, Z. Li, J.-L. Zeng, X.-W. Zhang, Z.-D. Chen, J. Z. Y. Tan, R.-Q. Peng, H.-Y. He, and J. Wang, "Mechanisms in photoluminescence enhancement of ZnO nanorod arrays by the localized surface plasmons of Ag nanoparticles," Appl. Surf. Sci. 258, 8548-8551 (2012).
40.T. K. Sau and A. L. Rogach, "Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control," Adv. Mater. 22, 1781-1804 (2010).
41.A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, "Gold nanoparticles: a revival in precious metal administration to patients," Nano Lett. 11, 4029-4036 (2011).
42.V. K. K. Upadhyayula, "Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review," Anal. Chim. Acta 715, 1-18 (2012).
43.K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, "Gold nanoparticles in chemical and biological sensing," Chem. Rev. 112, 2739-2779 (2012).
44.Y. Jin, "Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine," Adv. Mater. 24, 1-13 (2012).
45.F. P. Zamborini, L. Bao, and R. Dasari, "Nanoparticles in measurement science," Anal. Chem. 84, 541-576 (2012).
46.R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles," Science 277, 1078-1081 (1997).
47.Y. C. Cao, R. Jin, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science 297, 1536-1540 (2002).
48.P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, "Functionalized gold nanoparticles and their biomedical applications," Nanomaterials 1, 31-63 (2011).
49.N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B 105, 4065-4067 (2001).
50.B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method," Chem. Mater. 15, 1957-1962 (2003).
51.J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249, 1870-1901 (2005).
52.S. Smitha, K. Gopchandran, T. Ravindran, and V. Prasad, "Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates," Nanotechnology 22, 265705-265712 (2011).
53.L. Vigderman, B. P. Khanal, and E. R. Zubarev, "Functional gold nanorods: synthesis, self-assembly, and sensing applications," Adv. Mater. 24, 1-31 (2012).
54.J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, "Spatially-directed oxidation of gold nanoparticles by Au(III)−CTAB complexes," J. Phys. Chem. B 109, 14257-14261 (2005).
55.P. Jaiswal, V. Ijeri, and A. Srivastava, "Effect of surfactants on the dissociation constants of ascorbic and maleic acids," Colloids Surf., B 46, 45-51 (2005).
56.X. Cai, C. L. Wang, H. H. Chen, C. C. Chien, S. F. Lai, Y. Y. Chen, T. E. Hua, I. M. Kempson, Y. Hwu, and C. Yang, "Tailored Au nanorods: optimizing functionality, controlling the aspect ratio and increasing biocompatibility," Nanotechnology 21, 335604-335612 (2010).
57.T. K. Sau and C. J. Murphy, "Seeded high yield synthesis of short Au nanorods in aqueous solution," Langmuir 20, 6414-6420 (2004).
58.Y. Niidome, Y. Nakamura, K. Honda, Y. Akiyama, K. Nishioka, H. Kawasaki, and N. Nakashima, "Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry," Chem. Comm., 1754-1756 (2009).
59.N. Garg, C. Scholl, A. Mohanty, and R. Jin, "The role of bromide ions in seeding growth of Au nanorods," Langmuir 26, 10271-10276 (2010).
60.J. Gao, C. M. Bender, and C. J. Murphy, "Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution," Langmuir 19, 9065-9070 (2003).
61.H. M. Chen, R.-S. Liu, K. Asakura, L.-Y. Jang, and J.-F. Lee, "Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process," J. Phys. Chem. 111, 18550-18557 (2007).
62.J. A. Edgar, A. M. McDonagh, and M. B. Cortie, "Formation of gold nanorods by a stochastic “popcorn” mechanism," ACS Nano 6, 1116-1125 (2012).
63.M. Faraday, "The Bakerian lecture: experimental relations of gold (and other metals) to light," Philos. Trans. R. Soc. London 147, 145-181 (1857).
64.J. Turkevich, P. C. Stevenson, and J. Hillier, "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discuss. Faraday Soc. 11, 55-75 (1951).
65.M. K. Chow and C. F. Zukoski, "Gold sol formation mechanisms: role of colloidal stability," J. Colloid Interface Sci. 165, 97-109 (1994).
66.N. R. Jana, L. Gearheart, and C. J. Murphy, "Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template," Adv. Mater. 13, 1389-1393 (2001).
67.T. N. Dung, D. J. Kim, and K. S. Kim, "Controlled synthesis and biomolecular probe application of gold nanoparticles," Micron 42, 207-227 (2011).
68.L. Gou and C. J. Murphy, "Fine-tuning the shape of gold nanorods," Chem. Mater. 17, 3668-3672 (2005).
69.C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, "Anisotropic metal nanoparticles:synthesis, assembly, and optical applications," Phys. Chem. B 109, 13857-13870 (2005).
70.C. G. Wang, T. G. Wang, Z. F. Ma, and Z. G. Su, "pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios," Nanotechnology 16, 2555-2560 (2005).
71.G. Kawamura and M. Nogami, "Application of a conproportionation reaction to a synthesis of shape-controlled gold nanoparticles," J. Cryst. Growth 311, 4462-4466 (2009).
72.H. Li, C. Kan, Z. Yi, X. Ding, Y. Cao, and J. Zhu, "Synthesis of one dimensional gold nanostructures," J. Nanomater. 2010, 1-8 (2010).
73.Z. Jiao, H. Xia, and X. Tao, "Modulation of localized surface plasmon resonance of nanostructured gold crystals by tuning their tip curvature with assistance of iodide and silver(I) ions," J. Phys. Chem. 115, 7887-7895 (2011).
74.H. Fenniri and R. Alvarez-Puebla, "High-throughput screening flows along," Nat. Chem. Biol. 3, 247-249 (2007).
75.K. D. Bake and D. R. Walt, "Multiplexed spectroscopic detections," Annu. Rev. Anal. Chem. 1, 515-547 (2008).
76.M. Piliarik, H. Vaisocherová, and J. Homola, "A new surface plasmon resonance sensor for high-throughput screening applications," Biosens. Bioelectron. 20, 2104-2110 (2005).
77.J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, "Multi-analyte surface plasmon resonance biosensing," Methods 37, 26-36 (2005).
78.B. Sutapun, A. Somboonkaew, R. Amrit, N. Houngkamhang, and T. Srikhirin, "A multichannel surface plasmon resonance sensor using a new spectral readout system without moving optics," Sens. Actuator B-Chem. 156, 312-318 (2011).
79.S. P. Ravindranath, Y. Wang, and J. Irudayaraj, "SERS driven cross-platform based multiplex pathogen detection," Sens. Actuator B-Chem. 152, 183-190 (2011).
80.S. Ray, P. J. Reddy, S. Choudhary, D. Raghu, and S. Srivastava, "Emerging nanoproteomics approaches for disease biomarker detection: a current perspective," J. Proteomics 74, 2660-2681 (2011).
81.J. Neng, M. H. Harpster, W. C. Wilson, and P. A. Johnson, "Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles," Biosens. Bioelectron. (2012), http://dx.doi.org/10.1016/j.bios.2012. 08.048.
82.K. Yang and C.-y. Zhang, "Improved sensitivity for the electrochemical biosensor with an adjunct probe," Anal. Chem. 82, 9500-9505 (2010).
83.T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, "Label-free detection of peptide nucleic acid−DNA hybridization using localized surface plasmon resonance based optical biosensor," Anal. Chem. 77, 6976-6984 (2005).
84.J. Wang, J. Liu, L. Chen, and F. Lu, "Highly selective membrane-free, mediator-free glucose biosensor," Anal. Chem. 66, 3600-3603 (1994).
85.J. S. Lundgren and F. V. Bright, "Biosensor for the nonspecific determination of ionic surfactants," Anal. Chem. 68, 3377-3381 (1996).
86.A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, "DNA biosensors and microarrays," Chem. Rev. 108, 109-139 (2007).
87.M. Han, X. Gao, J. Z. Su, and S. Nie, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules," Nat. Biotechnol. 19, 631-635 (2001).
88.J. Malicka, I. Gryczynski, J. Fang, and J. R. Lakowicz, "Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles," Anal. Biochem. 317, 136-146 (2003).
89.K. Enander, L. Choulier, A. L. a. Olsson, D. A. Yushchenko, D. Kanmert, A. S. Klymchenko, A. P. Demchenko, Y. Mély, and D. Altschuh, "A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte," Bioconjugate Chem. 19, 1864-1870 (2008).
90.Z. Li, Y. Wang, J. Wang, Z. Tang, J. G. Pounds, and Y. Lin, "Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip," Anal. Chem. 82, 7008-7014 (2010).
91.N. R. Isola, D. L. Stokes, and T. Vo-Dinh, "Surface-enhanced Raman gene probe for HIV detection," Anal. Chem. 70, 1352-1356 (1998).
92.W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, "Luminescent quantum dots for multiplexed biological detection and imaging," Curr. Opin. Biotechnol. 13, 40-46 (2002).
93.L. Sun, C. Yu, and J. Irudayaraj, "Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection," Anal. Chem. 79, 3981-3988 (2007).
94.L. Rodriguez-Lorenzo, L. Fabris, and R. A. Alvarez-Puebla, "Multiplex optical sensing with surface-enhanced Raman scattering: a critical review," Anal. Chim. Acta 745, 10-23 (2012).
95.X. X. Han, Y. Ozaki, and B. Zhao, "Label-free detection in biological applications of surface-enhanced Raman scattering," TrAC, Trends Anal. Chem. 38, 67-78 (2012).
96.L. Wang and W. Tan, "Multicolor FRET silica nanoparticles by single wavelength excitation," Nano Lett. 6, 84-88 (2005).
97.Y. Li, Y. T. H. Cu, and D. Luo, "Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes," Nat. Biotech. 23, 885-889 (2005).
98.C. Wu, H. Peng, Y. Jiang, and J. McNeill, "Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles," J. Phys. Chem. B 110, 14148-14154 (2006).
99.M. Nakamura, M. Shono, and K. Ishimura, "Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles," Anal. Chem. 79, 6507-6514 (2007).
100.P. S. Eastman, W. Ruan, M. Doctolero, R. Nuttall, G. de Feo, J. S. Park, J. S. F. Chu, P. Cooke, J. W. Gray, S. Li, and F. F. Chen, "Qdot nanobarcodes for multiplexed gene expression analysis," Nano Lett. 6, 1059-1064 (2006).
101.H. Pan, R. Cui, and J.-J. Zhu, "CdTe quantum dots as probes for near-infrared fluorescence biosensing using biocatalytic growth of Au nanoparticles," J. Phys. Chem. B 112, 16895-16901 (2008).
102.J. Yang, S. R. Dave, and X. Gao, "Quantum dot nanobarcodes: epitaxial assembly of nanoparticle polymer complexes in homogeneous solution," J. Am. Chem. Soc. 130, 5286-5292 (2008).
103.M. Gellner, K. Kömpe, and S. Schlücker, "Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules," Anal. Bioanal. Chem. 394, 1839-1844 (2009).
104.J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, "Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold golloids," Anal. Chem. 71, 4903-4908 (1999).
105.J. D. Driskell, R. J. Lipert, and M. D. Porter, "Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering," J. Phys. Chem. B 110, 17444-17451 (2006).
106.S. P. Mulvaney, M. D. Musick, C. D. Keating, and M. J. Natan, "Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering," Langmuir 19, 4784-4790 (2003).
107.W. E. Doering and S. M. Nie, "Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering," Anal. Chem. 75, 6171-6176 (2003).
108.X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26, 83-90 (2008).
109.C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, "Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles," Langmuir 25, 13894-13899 (2009).
110.M. Yang, T. Chen, W. S. Lau, Y. Wang, Q. Tang, Y. Yang, and H. Chen, "Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes," Small 5, 198-202 (2009).
111.R. McQueenie, R. Stevenson, R. Benson, N. MacRitchie, I. McInnes, P. Maffia, K. Faulds, D. Graham, J. Brewer, and P. Garside, "Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging," Anal. Chem. 84, 5968-5975 (2012).
112.L. O. Brown and S. K. Doorn, "Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates," Langmuir 24, 2178-2185 (2008).
113.L. O. Brown and S. K. Doorn, "A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing," Langmuir 24, 2277-2280 (2008).
114.L. Rodriguez-Lorenzo, Z. Krpetic, S. Barbosa, R. A. Alvarez-Puebla, L. M. Liz-Marzan, I. A. Prior, and M. Brust, "Intracellular mapping with SERS-encoded gold nanostars," Integr. Biol. 3, 922-926 (2011).
115.A. M. Gabudean, M. Focsan, and S. Astilean, "Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS)," J. Phys. Chem. C 116, 12240-12249 (2012).
116.R. A. Copeland, S. P. A. Fodor, and T. G. Spiro, "Surface-enhanced Raman spectra of an active flavoenzyme: glucose oxidase and riboflavin binding protein on silver particles," J. Am. Chem. Soc. 106, 3872-3874 (1984).
117.L. H. Eng, V. Schlegel, D. Wang, H. Y. Neujahr, M. T. Stankovich, and T. Cotton, "Resonance Raman scattering and surface-enhanced resonance Raman scattering studies of oxido-reduction of cytochrome c3," Langmuir 12, 3055-3059 (1996).
118.K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, "Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS)," Phys. Rev. E 57, R6281-R6284 (1998).
119.E. Podstawka, Y. Ozaki, and L. M. Proniewicz, "Part II: surface-enhanced Raman spectroscopy investigation of methionine containing heterodipeptides adsorbed on colloidal silver," Appl. Spectrosc. 58, 581-590 (2004).
120.E. Podstawka, Y. Ozaki, and L. M. Proniewicz, "Adsorption of S–S containing proteins on a colloidal silver surface studied by surface-enhanced Raman spectroscopy," Appl. Spectrosc. 58, 1147-1156 (2004).
121.E. Podstawka, Y. Ozaki, and L. M. Proniewicz, "Part I: Surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver," Appl. Spectrosc. 58, 570-580 (2004).
122.S. E. J. Bell and N. M. S. Sirimuthu, "Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides," J. Am. Chem. Soc. 128, 15580-15581 (2006).
123.M. Feng and H. Tachikawa, "Surface-enhanced resonance Raman spectroscopic characterization of the protein native structure," J. Am. Chem. Soc. 130, 7443-7448 (2008).
124.E. Prado, N. Daugey, S. Plumet, L. Servant, and S. Lecomte, "Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy," Chem. Comm. 47, 7425-7427 (2011).
125.M. Lin, L. He, J. Awika, L. Yang, D. R. Ledoux, H. Li, and A. Mustapha, "Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC," J. Food Sci. 73, 129-134 (2008).
126.K. R. Ackermann, T. Henkel, and J. Popp, "Quantitative online detection of low-concentrated drugs via a SERS microfluidic system," ChemPhysChem 8, 2665-2670 (2007).
127.S. Farquharson, C. Shende, A. Sengupta, H. Huang, and F. Inscore, "Rapid detection and identification of overdose drugs in saliva by surface-enhanced Raman scattering using fused gold colloids," Pharmaceutics 3, 425-439 (2011).
128.X. X. Han, G. G. Huang, B. Zhao, and Y. Ozaki, "Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering," Anal. Chem. 81, 3329-3333 (2009).
129.S. Abdali, B. De Laere, M. Poulsen, M. Grigorian, E. Lukanidin, and J. r. Klingelhöfer, "Toward methodology for detection of cancer-promoting S100A4 protein conformations in subnanomolar concentrations using Raman and SERS," J. Phys. Chem. C 114, 7274-7279 (2010).
130.N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, and C. Haisch, "Label-free in situ SERS imaging of biofilms," J. Phys. Chem. B 114, 10184-10194 (2010).
131.P.-J. Huang, L.-K. Chau, T.-S. Yang, L.-L. Tay, and T.-T. Lin, "Nanoaggregate-embedded beads as novel Raman labels for biodetection," Adv. Funct. Mat. 19, 242-248 (2009).
132.I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, "Barcoding bacterial cells: a SERS-based methodology for pathogen identification," J. Raman Spectrosc. 39, 1660-1672 (2008).
133.X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, "Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures," Nano Lett. 5, 49-54 (2005).
134.G. Chen, Y. Wang, M. Yang, L. H. Tan, and H. Chen, "High purity separation of nanoparticle dimers and trimers for SERS hot spots," in 2010 3rd international nanoelectronics conference (INEC 2010), (IEEE, Hong Kong, 2010), pp. 328-329.
135.C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Y. Huang, "The many faces of gold nanorods," J. Phys. Chem. Lett. 1, 2867-2875 (2010).
136.C. J. Orendorff and C. J. Murphy, "Quantitation of metal content in the silver-assisted growth of gold nanorods," J. Phys. Chem. B 110, 3990-3994 (2006).
137.A. Gole and C. J. Murphy, "Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed," Chem. Mater. 16, 3633-3640 (2004).
138.A. S. Barnard, N. P. Young, A. I. Kirkland, M. A. van Huis, and H. Xu, "Nanogold: a quantitative phase map," ACS Nano 3, 1431-1436 (2009).
139.M. Liu and P. Guyot-Sionnest, "Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids," J. Phys. Chem. B 109, 22192-22200 (2005).
140.R. Becker, B. Liedberg, and P. O. Kall, "CTAB promoted synthesis of Au nanorods-temperature effects and stability considerations," J. Colloid Interface Sci. 343, 25-30 (2010).
141.S. Lee, L. J. E. Anderson, C. M. Payne, and J. H. Hafner, "Structural transition in the surfactant layer that surrounds gold nanorods as observed by analytical surface-enhanced Raman spectroscopy," Langmuir 27, 14748-14756 (2011).
142.M. Sethi, G. Joung, and M. R. Knecht, "Stability and electrostatic assembly of Au nanorods for use in biological assays," Langmuir 25, 317-325 (2009).
143.L. M. Liz-Marzán, "Nanometals: formation and color," Mater. Today 17, 26-31 (2005).
144.J.-P. Malugani and R. Mercier, "Vibrational properties of and short range order in superionic glasses AgPO3−AgX (X = I, Br, Cl)," Solid State Ionics 13, 293-299 (1984).
145.W. Hu, Wiria, W. L. Ong, and G. W. Ho, "High yield shape control of monodispersed Au nanostructures with 3D self-assembly ordering," Colloids Surf., A 358, 108-114 (2010).
146.R. L. Garrell, K. D. Shaw, and S. Krimm, "Surface enhanced Raman spectroscopy of halide ions on colloidal silver: morphology and coverage dependence," Surf. Sci. 124, 613-624 (1983).
147.M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, "Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution," J. Phys. Chem. 98, 12702-12707 (1994).
148.B. O. Skadtchenko and R. Aroca, "Surface-enhanced Raman scattering of p-nitrothiophenol-molecular vibrations of its silver salt and the surface complex formed on silver islands and colloids," Spectrochim. Acta A Mol. Biomol. Spectrosc. 57, 1009-1016 (2001).
149.E. Le Ru, P. Etchegoin, J. Grand, N. Felidj, J. Aubard, and G. Levi, "Mechanisms of spectral profile modification in surface-enhanced fluorescence," J. Phys. Chem. C 111, 16076-16079 (2007).
150.X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: off-surface plasmon resonance condition," J. Phys. Chem. C 111, 6962-6969 (2007).
151.C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mat. 16, 1673-1678 (2006).
152.I. Gorelikov and N. Matsuura, "Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles," Nano Lett. 8, 369-373 (2008).
153.T. L. Doane, C.-H. Chuang, R. J. Hill, and C. Burda, "Nanoparticle ζ -potentials," Acc. Chem. Res. 45, 317-326 (2011).
154.H.-S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, "Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials," Langmuir 24, 13833-13837 (2008).
155.A. R. Ferhan, L. Guo, and D.-H. Kim, "Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass," Langmuir 26, 12433-12442 (2010).
156.S. K. Mehta, S. Kumar, and M. Gradzielski, "Growth, stability, optical and photoluminescent properties of aqueous colloidal ZnS nanoparticles in relation to surfactant molecular structure," J. Colloid Interface Sci. 360, 497-507 (2011).
157.T. S. Hauck, A. A. Ghazani, and W. C. Chan, "Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells," Small 4, 153-159 (2008).
158.J. C. Berg, An introduction to interfaces & colloids : the bridge to nanoscience (World Scientific Publishing Co., Singapore, 2010).
159.F. Quirion and L. J. Magid, "Growth and counterion binding of cetyltrimethylammonium bromide aggregates at at 25 ℃: a neutron and light scattering study," J. Phys. Chem. 90, 5435-5441 (1986).
160.R. I. Nooney, D. Thirunavukkarasu, Y. M. Chen, R. Josephs, and A. E. Ostafin, "Self-assembly of mesoporous nanoscale silica/gold composites," Langmuir 19, 7628-7637 (2003).
161.M. T. Anderson, J. E. Martin, J. G. Odinek, and P. P. Newcomer, "Effect of methanol concentration on CTAB micellization and on the formation of surfactant-templated silica (STS)," Chem. Mater. 10, 1490-1500 (1998).
162.E. J. A. Pope and J. D. Mackenzie, "Sol-gel processing of silica: II. the role of the catalyst," J. Non-Cryst. Solids. 87, 185-198 (1986).
163.S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, and W. H. Tan, "Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants," Langmuir 17, 2900-2906 (2001).
164.T. Ung, L. M. Liz-Marzan, and P. Mulvaney, "Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions," Langmuir 14, 3740-3748 (1998).
165.J. Depasse, "Interaction between silica and hydrophobic cations," Br. J. Ind. Med. 35, 32-34 (1978).
166.F. Di Renzo, F. Testa, J. D. Chen, H. Cambon, A. Galarneau, D. Plee, and F. Fajula, "Textural control of micelle-templated mesoporous silicates: the effects of co-surfactants and alkalinity," Microporous Mesoporous Mat. 28, 437-446 (1999).
167.L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, "Synthesis of nanosized gold−silica core−shell particles," Langmuir 12, 4329-4335 (1996).
168.C. Farcau and S. Astilean, "Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background," Chem. Comm. 47, 3861-3863 (2011).
169.P. Innocenzi, "Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview," Non-Cryst. Solids. 316, 309-319 (2003).
170.N. Liu, R. A. Assink, B. Smarsly, and C. J. Brinker, "Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable–NH2 groups," Chem. Comm., 1146-1147 (2003).
171.P. Innocenzi, P. Falcaro, D. Grosso, and F. Babonneau, "Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy," J. Phys. Chem. B 107, 4711-4717 (2003).
172.K. H. S. Kung and K. F. Hayes, "Fourier transform infrared spectroscopic study of the adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica," Langmuir 9, 263-267 (1993).
173.J. Shen, A. Luo, L. Yao, X. Lin, B. Zhou, G. Wu, and X. Ni, "Low dielectric constant silica films with ordered nanoporous structure," Mater. Sci. Eng. C 27, 1145-1148 (2007).
174.R. G. Snyder, H. L. Strauss, and C. A. Elliger, "Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. long, disordered chains," J. Phys. Chem. 86, 5145-5150 (1982).
175.H. P. Lin and C. Y. Mou, "Structural and morphological control of cationic surfactant-templated mesoporous silica," Acc. Chem. Res. 35, 927-935 (2002).
176.C.-C. Huang, C.-H. Huang, I. T. Kuo, L.-K. Chau, and T.-S. Yang, "Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration," Colloids Surf., A. 409, 61- 68 (2012).
177.K.-P. Chang, C.-S. Lai, and S.-D. Lin, "Management of poisonous snake bites in southern Taiwan," Kaohsiung J. Med. Sci. 23, 511-518 (2007).
178.C. Y. Huang, D. Z. Hung, and W. K. Chen, "Antivenin-related serum sickness," J. Chin. Med. Assoc. 73, 540-542 (2010).
179.C.-C. Chang, I. C. Kuo, J.-J. Lin, Y.-C. Lu, C.-T. Chen, H.-T. Back, P.-J. Lou, and T.-C. Chang, "A novel carbazole derivative, BMVC: a potential antitumor agent and fluorescence marker of cancer cells," Chem. Biodivers. 1, 1377-1384 (2004).
180.C.-M. Chen, K.-G. Wu, C.-J. Chen, and C.-M. Wang, "Bacterial infection in association with snakebite: a 10-year experience in a northern Taiwan medical center," J. Microbiol. Immunol. Infect. 44, 456-460 (2011).
181.J. P. Chippaux and M. Goyffon, "Venoms, antivenoms and immunotherapy," Toxicon 36, 823-846 (1998).
182.R. D. G. Theakston and H. A. Reid, "Enzyme-linked immunosorbent assay (ELISA) in assessing antivenom potency," Toxicon 17, 511-515 (1979).
183.P. Gopalakrishnakone, B. J. Hawgood, and R. D. G. Theakston, "Specificity of antibodies to the reconstituted crotoxin complex, from the venom of south American rattlesnake (crotalus durissus terrificus), using enzyme-linked immunosorbent assay (ELISA) and double immunodiffusion," Toxicon 19, 131-139 (1981).
184.R. D. G. Theakston, "The application of immunoassay techniques, including enzyme-linked immunosorbent assay (ELISA), to snake venom research," Toxicon 21, 341-352 (1983).
185.A. Bee, R. D. G. Theakston, R. A. Harrison, and S. D. Carter, "Novel in vitro assays for assessing the haemorrhagic activity of snake venoms and for demonstration of venom metalloproteinase inhibitors," Toxicon 39, 1429-1434 (2001).
186.J. M. Howes, R. D. G. Theakston, and G. D. Laing, "Antigenic relationships and relative immunogenicities of isolated metalloproteinases from Echis ocellatus venom," Toxicon 45, 677-680 (2005).
187.J. M. Gutiérrez, D. Williams, H. W. Fan, and D. A. Warrell, "Snakebite envenoming from a global perspective: towards an integrated approach," Toxicon 56, 1223-1235 (2010).
188.R. A. Harrison, D. A. Cook, C. Renjifo, N. R. Casewell, R. B. Currier, and S. C. Wagstaff, "Research strategies to improve snakebite treatment: challenges and progress," J. Proteomics 74, 1768-1780 (2011).
189.S. Wonnacott, R. Harrison, and G. Lunt, "Immunological cross-reactivity between the α-bungarotoxin-binding component from rat brain and nicotinic acetylcholine receptor," J. Neuroimmunol. 3, 1-13 (1982).
190.L.-S. Chang, C. Chung, J.-C. Liou, C.-W. Chang, and C.-C. Yang, "Novel neurotoxins from Taiwan banded krait (Bungarus multicinctus) venom: purification, characterization and gene organization," Toxicon 42, 323-330 (2003).
191.C. Chang, T. Chen, and C. Lee, "Studies of the presynaptic effect of β-bungarotoxin on neuromuscular transmission," J. Pharmacol. Exp. Ther. 184, 339-345 (1973).
192.R. O. Hynes, "Integrins: versatility, modulation, and signaling in cell adhesion," Cell 69, 11-25 (1992).
193.I. C. Kang, Y. D. Lee, and D. S. Kim, "A novel disintegrin salmosin inhibits tumor angiogenesis," Cancer Res. 59, 3754-3760 (1999).
194.M. A. Horton, "The αvβ3 integrin “vitronectin receptor”," Int. J. Biochem. Cell Biol. 29, 721-725 (1997).
195.Q. B. Li, Q. S. Yu, G. W. Huang, Y. Tokeshi, M. Nakamura, K. Kinjoh, and T. Kosugi, "Hemostatic disturbances observed in patients with snakebite in south China," Toxicon 38, 1355-1366 (2000).
196.W. K. You, Y. J. Jang, K. H. Chung, and D. S. Kim, "A novel disintegrin-like domain of a high molecular weight metalloprotease inhibits platelet aggregation," Biochem. Biophys. Res. Commun. 309, 637-642 (2003).
197.E. Pollina, "Design and synthesis of RGD mimetics as potent inhibitors of platelet aggregation," J. Undergrad. Sci. 3, 119-126 (1996).
198.X.-B. Xiong, A. Mahmud, H. Uludaǧ, and A. Lavasanifar, "Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(ε-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells," Biomacromolecules 8, 874-884 (2007).
199.X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, and S. Nie, "A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands," ACS Nano 4, 5887-5896 (2010).
200.D. Psimadas, M. Fani, E. Gourni, G. Loudos, S. Xanthopoulos, C. Zikos, P. Bouziotis, and A. D. Varvarigou, "Synthesis and comparative assessment of a labeled RGD peptide bearing two different 99mTc-tricarbonyl chelators for potential use as targeted radiopharmaceutical," Bioorg. Med. Chem. 20, 2549-2557 (2012).
201.I. Pavel, E. McCarney, A. Elkhaled, A. Morrill, K. Plaxco, and M. Moskovits, "Label-free SERS detection of small proteins modified to act as bifunctional linkers," J. Phys. Chem. C 112, 4880-4883 (2008).
202.M. Knauer, N. P. Ivleva, X. Liu, R. Niessner, and C. Haisch, "Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms," Anal. Chem. 82, 2766-2772 (2010).
203.X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, "Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers," Anal. Chem. 83, 5888-5894 (2011).
204.B. Saute and R. Narayanan, "Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles," Analyst 136, 527-532 (2011).
205.R. Pérez-Pineiro, M. A. Correa-Duarte, V. Salgueirino, and R. A. Alvarez-Puebla, "SERS assisted ultra-fast peptidic screening: a new tool for drug discovery," Nanoscale 4, 113-116 (2011).
206.O. Dong and D. C. C. Lam, "Silver nanoparticles as surface-enhanced Raman substrate for quantitative identification of label-free proteins," Mater. Chem. Phys. 126, 91-96 (2011).
207.C. Jing and Y. Fang, "Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of l-cysteine on gold/silver nanoparticles," Chem. Phys. 332, 27-32 (2007).
208.S. Hu, K. M. Smith, and T. G. Spiro, "Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin," J. Am. Chem. Soc. 118, 12638-12646 (1996).
209.W. A. El-Said, T. H. Kim, H. Kim, and J. W. Choi, "Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering," PLoS One 6, e15836-e15845 (2011).
210.M. R. Hanley, V. A. Eterovic, S. P. Hawkes, A. J. Hebert, and E. L. Bennett, "Neurotoxins of Bungarus multicinctus venom purification and partial characterization," Biochemistry 16, 5840-5849 (1977).
211.K. Kondo, T. Hiroko, K. Narita, and C.-Y. Lee, "Amino acid sequence of β2-bungarotoxin from Bungarus multicinctus venom. The amino acid substitutions in the B Chains," J. Biochem. 91, 1519-1530 (1982).
212.S. Braud, C. Bon, and A. Wisner, "Snake venom proteins acting on hemostasis," Biochimie. 82, 851-859 (2000).
213.D.-Z. Hung, "Taiwan’s venomous snakebite: epidemiological, evolution and geographic differences," Trans. R. Soc. Trop. Med. Hyg. 98, 96-101 (2004).
214.D. C. I. Koh, A. Armugam, and K. Jeyaseelan, "Snake venom components and their applications in biomedicine," Cell. Mol. Life Sci. 63, 3030-3041 (2006).
215.J. A. Eble, "Matrix biology meets toxinology," Matrix Biol. 29, 239-247 (2010).
216.J. J. Calvete, P. Juárez, and L. Sanz, "Snake venomics. Strategy and applications," J. Mass Spectrom. 42, 1405-1414 (2007).
217.Q. Xu, X. F. Wu, Q. C. Xia, and K. Y. Wang, "Cloning of a galactose-binding lectin from the venom of Trimeresurus stejnegeri," Biochem. J. 341, 733-737 (1999).
218.朱苑萍,"台灣雨傘節beta-Bungarotoxins: 異構毒素、作用標的與基因結構之研究",碩士論文,國立中山大學生物醫學科學研究所,(2002)。
219.S. Chah, M. R. Hammond, and R. N. Zare, "Gold nanoparticles as a colorimetric sensor for protein conformational changes," Chem. Biol. 12, 323-328 (2005).
220.A. Alkilany and C. Murphy, "Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?," J. Nanopart. Res. 12, 2313-2333 (2010).
221.S. H. Brewer, W. R. Glomm, M. C. Johnson, M. K. Knag, and S. Franzen, "Probing BSA binding to citrate-coated gold nanoparticles and surfaces," Langmuir 21, 9303-9307 (2005).
222.A. Barth and C. Zscherp, "What vibrations tell us about proteins," Q. Rev. Biophys. 35, 369-430 (2002).
223.N. C. Maiti, M. M. Apetri, M. G. Zagorski, P. R. Carey, and V. E. Anderson, "Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein," J. Am. Chem. Soc. 126, 2399-2408 (2004).
224.V. R. Kodati and A. T. Tu, "Raman spectroscopic identification of cystine-type kidney stone," Appl. Spectrosc. 44, 837-839 (1990).
225.G. K. Parker, K. M. Watling, G. A. Hope, and R. Woods, "A SERS spectroelectrochemical investigation of the interaction of sulfide species with gold surfaces," Colloids Surf., A 318, 151-159 (2008).
226.H. Grönbeck, A. Curioni, and W. Andreoni, "Thiols and disulfides on the Au(111) surface: the headgroup−gold interaction," J. Am. Chem. Soc. 122, 3839-3842 (2000).
227.G. J. Thomas, B. Prescott, R. Love, and R. M. Stroud, "Evidence for conformational differences in aqueous and crystalline structures of α-bungarotoxin and cobratoxin," Spectrochim. Acta, Part A 42, 215-222 (1986).
228.A. Abbott, "Chromosome protection scoops Nobel," Nature 461, 706-707 (2009).
229.E. H. Blackburn, "Structure and function of telomeres," Nature 350, 569-573 (1991).
230.M. A. Blasco, S. M. Gasser, and J. Lingner, "Telomeres and telomerase," Gene. Dev. 13, 2353-2359 (1999).
231.J. D. Watson, "Origin of goncatemeric T7 DNA," Nature 239, 197-201 (1972).
232.G. Aubert and P. M. Lansdorp, "Telomeres and aging," Physiol. Rev. 88, 557-579 (2008).
233.M. Armanios, "Syndromes of telomere shortening," Annu. Rev. Genomics Hum. Genet. 10, 45-61 (2009).
234.C. B. Harley and B. Villeponteau, "Telomeres and telomerase in aging and cancer," Curr. Opin. Genet. Dev. 5, 249-255 (1995).
235.J. Shay and S. Bacchetti, "A survey of telomerase activity in human cancer," Eur. J. Cancer 33, 787-791 (1997).
236.A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, and W. E. Wright, "Extension of life-span by introduction of telomerase into normal human cells," Science 279, 349-352 (1998).
237.J. W. Shay and W. E. Wright, "Telomerase: a target for cancer therapeutics," Cancer Cell 2, 257-265 (2002).
238.Y. Xu, K. He, and A. Goldkorn, "Telomerase targeted therapy in cancer and cancer stem cells," Clin. Adv. Hematol. Oncol. 9, 442-455 (2011).
239.M. M. Ouellette, W. E. Wright, and J. W. Shay, "Targeting telomerase-expressing cancer cells," J. Cell. Mol. Med. 15, 1433-1442 (2011).
240.B. Bernardes de Jesus, E. Vera, K. Schneeberger, A. M. Tejera, E. Ayuso, F. Bosch, and M. A. Blasco, "Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer," EMBO Mol. Med. 4, 691-704 (2012).
241.F.-C. Huang, C.-C. Chang, P.-J. Lou, I.-C. Kuo, C.-W. Chien, C.-T. Chen, F.-Y. Shieh, T.-C. Chang, and J.-J. Lin, "G-quadruplex stabilizer 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide induces accelerated senescence and inhibits tumorigenic properties in cancer cells," Mol. Cancer Res. 6, 955-964 (2008).
242.雷秀玲,"以表面增強拉曼及共振拉曼搭配分子理論計算研究化學分子和DNA的作用方式",碩士論文,國立中正大學化學暨生物化學所,(2006)。
243.J.-F. Chu, Z.-F. Wang, T.-Y. Tseng, and T.-C. Chang, "A novel method for screening G-quadruplex stabilizers to human telomeres," J. Chin. Chem. Soc. 58, 296-300 (2011).
244.F.-C. Huang, C.-C. Chang, J.-M. Wang, T.-C. Chang, and J.-J. Lin, "Induction of senescence in cancer cells by a G-quadruplex stabilizer BMVC4 is independent of its telomerase inhibitory activity," Br. J. Pharmacol. 167, 393-406 (2012).
245.方宏志,"利用拉曼探針分辨不同去氧核糖核酸結構",碩士論文,國立臺灣大學化學研究所,( 2009)。
246.G. J. Thomas Jr and L. A. Day, "Conformational transitions in Pf3 and their implications for the structure and assembly of filamentous bacterial viruses," Proc. Natl. Acad. Sci. USA 78, 2962-2966 (1981).
247.J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas Jr, "Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+," Biophys. J . 69, 2623-2641 (1995).
248.C. Y. Wu, W. Y. Lo, C. R. Chiu, and T. S. Yang, "Surface enhanced Raman spectra of oligonucleotides induced by spermine," J. Raman Spectrosc. 37, 799-807 (2006).
249.C. Wei, G. Jia, J. Yuan, Z. Feng, and C. Li, "A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs," Biochemistry 45, 6681-6691 (2006).
250.J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, "Reference database of Raman spectra of biological molecules," J. Raman Spectrosc. 38, 1133-1147 (2007).
251.S. Yarasi, B. E. Billinghurst, and G. R. Loppnow, "Vibrational properties of thymine, uracil and their isotopomers," J. Raman Spectrosc. 38, 1117-1126 (2007).
252.H. Nawaz, F. Bonnier, P. Knief, O. Howe, F. M. Lyng, A. D. Meade, and H. J. Byrne, "Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma," Analyst 135, 3070-3076 (2010).
253.E. Papadopoulou and S. E. J. Bell, "Structure of adenine on metal nanoparticles: pH equilibria and formation of Ag+ complexes detected by surface-enhanced Raman spectroscopy," J. Phys. Chem. C 114, 22644-22651 (2010).
254.C. V. Pagba, S. M. Lane, and S. Wachsmann-Hogiu, "Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer," J. Raman Spectrosc. 41, 241-247 (2010).
255.R. Liu, S. Zhu, M. Si, Z. Liu, and D. Zhang, "Surface-enhanced Raman scattering-based approach for DNA detection at low concentrations via polyvinyl alcohol-protected silver grasslike patterns," J. Raman Spectrosc. 43, 370-379 (2012).
256.S. Y. Lee and B. H. Boo, "Molecular structures and vibrational spectra of pyrrole and carbazole by density functional theory and conventional ab initio calculations," J. Phys. Chem. 100, 15073-15078 (1996).
257.M. P. M. Marques, P. J. Oliveira, A. J. M. Moreno, and L. A. E. Batista de Carvalho, "Study of carvedilol by combined Raman spectroscopy and ab initio MO calculations," J. Raman Spectrosc. 33, 778-783 (2002).
258.A. G. Brolo and D. E. Irish, "Raman spectral studies of aqueous acidic pyrazine solutions," Z. Naturforsch. 50, 274-282 (1995).
259.A. G. Brolo and D. E. Irish, "The adsorption and orientation of pyrazine on silver electrodes: a surface enhanced Raman scattering study," J. Electroanal. Chem. 414, 183-196 (1996).
260.M. Sun, Z. Li, Y. Liu, and H. Xu, "Direct visual evidence for chemical mechanisms of SERRS via charge transfer in Au20–pyrazine–Au20 junction," J. Raman Spectrosc. 40, 1942-1948 (2009).
261.J. M. Benevides, J. Kawakami, and G. J. Thomas, "Mechanisms of drug–DNA recognition distinguished by Raman spectroscopy," J. Raman Spectrosc. 39, 1627-1634 (2008).
262.F. A. Tanious, D. Ding, D. A. Patrick, R. R. Tidwell, and W. D. Wilson, "A new type of DNA minor-groove complex: carbazole dication−DNA interactions," Biochemistry 36, 15315-15325 (1997).
263.F. A. Tanious, D. Ding, D. A. Patrick, C. Bailly, R. R. Tidwell, and W. D. Wilson, "Effects of compound structure on carbazole dication-DNA complexes: tests of the minor-groove complex models," Biochemistry 39, 12091-12101 (2000).
264.X.-F. Zhang, H.-J. Zhang, J.-F. Xiang, Q. Li, Q.-f. Yang, Q. Shang, Y.-X. Zhang, and Y.-L. Tang, "The binding modes of carbazole derivatives with telomere G-quadruplex," J. Mol. Struct. 982, 133-138 (2010).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊