跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郝惟辰
研究生(外文):Hao, Wei-Chang
論文名稱(外文):The Theoretical Studies of the Si Interstitial Defect Formation in SiGe Alloy by Using the First Principle Calculation and Concentration Dependent Local Cluster Expansion Method
指導教授:李錫隆李錫隆引用關係
指導教授(外文):Shyi-Long Lee
口試委員:王伯昌梁贊全史蘭尼
口試委員(外文):Wang, Bo-ChengLeung,Tsan-ChuenZdenek Slanina
口試日期:2013-07-09
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:96
中文關鍵詞:間隙矽矽鍺
外文關鍵詞:Si interstitial defectSiGe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在本篇研究中,主要使用第一原理計算與concentration dependent local cluster expansion (CDLCE) 方法來探討間隙矽在矽鍺合金中的生成。 首先,我們在矽晶格中取代一顆與兩顆鍺原子,並分別計算其對三個位向的間隙矽tetrahedral (Td)、hexagonal (Hex) 與[110]-split的生成能量的影響。 接著,我們結合了密度泛函方法 (DFT) 與CDLCE方法,進一步分析鍺原子的組態及濃度效應對 Hex 與[110]-split位置間隙矽生成能量的影響。 結果顯示,經由擬合DFT計算結果所得到的有效團簇作用 (ECI),解釋了鍺原子組態效應的影響。 另外,對於濃度效應而言,間隙矽的平均生成能量會隨著鍺原子濃度的增加而增加。 然而,伴隨鍺原子濃度增加而增強的應變效應則會使間隙矽的生成能量下降。由於應變效應的影響較濃度效應強,因此,間隙矽的平均生成能量將會隨鍺原子的濃度增加而下降。
In this study, the Si Interstitial defect formation in SiGe was investigated by using the first principle calculation and concentration dependent local cluster expansion (CDLCE) method. The formation energies of Si interstitial defect at Tetrahedral (Td), Hexagonal (Hex) and [110]-split sites in SiGe with one-Ge and two-Ge replacement were studied. The CDLCE method combining DFT results was applied to analyze the configuration and concentration effects to the formation energy of Si interstitial defect at Hex and [110]-split sites. The effective cluster interaction (ECI) values, best-fitted to the DFT results, collect all the information of configuration effect. The formation energy of Si interstitial defect is increased with the increase of Ge concentration when only considering the pure concentration effect. However, the formation energy is decreased with the enhancement of strain effect, which is caused by the Ge concentration increasing. The strain effect is also stronger than the concentration effect, and thus the average formation energy of Si interstitial defect is decreased as the Ge concentration is increased.
Abstract ...............................................................................I
Table Captions ..............................................................................II
Figure Captions ..............................................................................IV
中文摘要
...............................................................................V
Chapter 1. Introduction ...............................................................................1
Chapter 2. Computational Method ...............................................................................4
2.1 Electronic structure Calculations of Si1-xGex ...............................................................................4
2.2 Concentration Dependent Local Cluster Expansion ...............................................................................7
Chapter 3. Results and Discussion ..............................................................................11
3.1 The formation of Si interstitial defect in Si lattice with one-Ge replacement ..............................................................................11
3.2 The formation of Si interstitial defect in Si lattice with two-Ge replacement ..............................................................................22
3.3 Strain effect ..............................................................................26
3.4 Short Summary ..............................................................................28
3.5 Concentration Dependent Local Cluster Expansion ..............................................................................29
Chapter 4. Conclusion ..............................................................................41
References ..............................................................................43
Appendix ..............................................................................46
[1] P.M. Fahey, P.B. Griffin, J.D. Plummer, Rev. Mod. Phys. 61 (1989) 289.
[2] R.J. Needs, J. Phys.: Condens. Matter 11 (1999) 10437.
[3] M. Tang, L. Colombo, J. Zhu, T. Diaz de la Rubia, Phys. Rev. B 55 (1997) 14279.
[4] M. Ieong, B. Doris, J. Kedzierski, K. Rim, M. Yang, Science 306 (2004) 2057.
[5] D. Seung-Woo, K. SeongHo, L. Yong-Hyun, O. Jae-Geun, L. Jin-Ku, J. Min-Ae, J. Seung-Joon, K. Ja-Chun, J. Korean Phys. Soc. 55 (2009) 1065.
[6] P. Delugas, V. Fiorentini, Phys. Rev. B 69 (2004) 085203.
[7] A.E. Michel, W. Rausch, P.A. Ronsheim, R.H. Kastl, Appl. Phys. Lett. 50 (1987) 416.
[8] P. Pichler, D. Stiebel, Nucl. Instrum. Meth. B 186 (2002) 256.
[9] M. Servidoli, Z. Sourek, S. Solmi, J. Appl. Phys. 62 (1987) 1723.
[10] D. Caliste, P. Pochet, T. Deutsch, F. Lançon, Phys. Rev. B 75 (2007) 125203.
[11] R. Jones, A. Carvalho, J.P. Goss, P.R. Briddon, Mat. Sci. Eng. B 159-160 (2009) 112.
[12] E. Kamiyama, K. Sueoka, J. Vanhellemont, ECS J. Solid State Sci. Technol. 2 (2013) P104.
[13] W.K. Leung, R.J. Needs, G. Rajagopal, S. Itoh, S. Ihara, VLSI Design 13 (2001) 229.
[14] A. Mattsson, R. Wixom, R. Armiento, Phys. Rev. B 77 (2008) 155211.
[15] P. Rinke, A. Janotti, M. Scheffler, C. Van de Walle, Phys. Rev. Lett. 102 (2009) 026402.
[16] C.C. Wang, Y.M. Sheu, S. Liu, R. Duffy, A. Heringa, N.E.B. Cowern, P.B.44 Griffin, Mat. Sci. Eng. B 124-125 (2005) 39.
[17] M. Shima, T. Ueno, T. Kumise, H. Shido, Y. Sakuma, S. Nakamura, Symposium on VLSI Technology Technical Digest (2002) 94.
[18] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, M. Bohr, IEDM Tech. Dig. (2003) 978.
[19] P. Bai, C. Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S. Lee, N. Lindert, M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R. Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber, B. Woolery, A. Yeoh, K. Zhang, M. Bohr, IEDM Tech. Dig. (2004) 657.
[20] J. Bang, J. Kang, W.-J. Lee, K. Chang, H. Kim, Phys. Rev. B 76 (2007) 1.
[21] J. Bang, H. Kim, J. Kang, W.-J. Lee, K.J. Chang, Physica B 401-402 (2007) 196.
[22] P. Castrillo, M. Jaraiz, R. Pinacho, J.E. Rubio, Thin Solid Films 518 (2010) 2448.
[23] L. Wang, P. Clancy, C. Murthy, Phys. Rev. B 70 (2004) 165206.
[24] J.M. Sanchez, Phys. Rev. B 81 (2010) 224202.
[25] L. Qin, C. Jiang, Int. J. Hydrogen Energy 37 (2012) 12760.
[26] M. Lavrentiev, R. Drautz, D. Nguyen-Manh, T. Klaver, S. Dudarev, Phys. Rev. B 75 (2007) 014208.
[27] J. Bernard, A. Zunger, Phys. Rev. B 44 (1991) 1663.
[28] L. Lin, T. Kirichenko, S.K. Banerjee, G.S. Hwang, J. Appl. Phys. 96 (2004) 45 5543.
[29] M. Daw, W. Windl, N. Carlson, M. Laudon, M. Masquelier, Phys. Rev. B 64 (2001) 045205.
[30] P. Kuo, J.L. Hoyt, J.F. Gibbons, J.E. Turner, D. Lefforge, Appl. Phys. Lett. 66 (1995) 580.
[31] P. Ganster, G. Tréglia, a. Saúl, Phys. Rev. B 79 (2009) 115205.
[32] L. Lin, T. Kirichenko, B. Sahu, G. Hwang, S. Banerjee, Phys. Rev. B 72 (2005) 205206.
[33] G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6 (1996) 15.
[34] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
[35] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.
[36] G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251.
[37] P.E. Blochl., Phys. Rev. B 50 (1994) 17953.
[38] G. Kresse, D. Joubert., Phys. Rev. B 59 (1999) 1758.
[39] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top