(34.226.234.102) 您好!臺灣時間:2021/05/12 09:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳芷辰
研究生(外文):Chen, Tzu-chen
論文名稱:土壤液化潛勢地區之近地表P波與S波波速變化研究
論文名稱(外文):Variation of the Near Surface of P-Wave and S-Wave Velocities in a Soil Liquefaction Potential Region
指導教授:石瑞銓石瑞銓引用關係
指導教授(外文):Shih, Ruey-Chyuan
口試委員:陳建易李進榮
口試委員(外文):Chen, Chien-YenLee, Chin-Rong
口試日期:2013-01-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:地震研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:83
中文關鍵詞:土壤液化近地表S波速度變化近地表P波波速變化
外文關鍵詞:liquefaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:397
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
土壤液化一般發生在近地表為鬆散砂質土壤且地下水位甚高之沖積地,為地震發生時不可忽視的二次災害。土體液化可能導致地面上之結構物沉陷、傾斜或倒塌,淺埋之輕型結構物與維生管線上浮或斷裂,或土壤噴出地表而堆積在房屋內,以及農田因為噴砂開裂而影響農作物。本研究利用P波折射以及多波道主動式震源表面波波速分析(MASW)法於新化北勢液化範圍內外佈設了七條測線,藉以探討近地表P波與S波波速變化與土壤液化之相關性。研究結果顯示,當地之P波與S波波速變化與土壤液化範圍有直接的相關,在未發生液化之區域,P波與S波橫向上之速度變化相差甚小,而液化區域內,S波速度明顯偏低但P波速度卻相反偏高。此外,液化發生區域之地表下5公尺範圍內,P波與S波速度並沒有明顯的變化,而主要的S波波速變化出現於地下5公尺至18公尺之間。液化發生區域內之P波速度主要的波速變化出現在地下5公尺至8公尺之間,於深度8公尺以下趨於平緩,這可能因為飽和含水狀態影響。對於地表並未發現任何液化現象之區域,深度8公尺以下之區域,整體橫向的S波波速與液化發生區域內之波速一致,因此推測該區域之地表下應有液化發生。雖然土壤液化的潛勢評估常會以工程的方式來進行,本研究認為P波與S波波速變化亦可以有效的做為土壤液化可能性評估的一種依據,並可更有效率的進行大範圍的調查。
Soil liquefaction is a natural hazard that we can never ignore during a large earthquake. Soil liquefaction is normally occurred at somewhere near the surface, while the sandy soil is loose and having higher level of ground water. Soil liquefaction can potentially cause the surface constructions subsiding, inclining or collapsing, and damage the shallow buried light structures and lifelines. Soil spurts to the surface will affect crops in the farmland as well. This study utilized the P-wave refraction method and the multichannel analysis of surface waves (MASW) method to obtain the variation of the near surface P-wave and S-wave velocities in a particular site in southern Taiwan, where liquefaction occurred in 1946 and again in 2010. The purpose of this study is to investigate the correlation between the velocities variations of the seismic waves near surface and the liquefaction within and outside the liquefaction area. Totally, seven survey lines were deployed; results of the study show that velocities of the P-wave and S-wave are directly related to the area with soil liquefaction phenomena. For the areas not having liquefaction, velocities of the P-wave and S-wave are almost the same in the horizontal direction, but varied vertically from the ground surface down to the depth of 18 m. However, within the liquefaction area, the velocities of P-wave and S-wave in the horizontal directions are not varied significantly within 5 meters beneath the surface; major variances of the P-wave and S-wave velocities appear at between 5 and 18 meters below the ground surface. Within the soil liquefaction area, the velocity of S-wave is low; however, the P-wave velocity is higher in contrast. In addition, because of the saturated water content, variations of the P-wave velocity in the horizontal direction remain the same below the depth of 8 m. For the area not having liquefaction seen on the surface, velocity of the S-wave below the depth of 8 m is similar to that regions having liquefaction in the horizontal direction, which inferred that the region would have liquefaction under the surface within the entire area of all liquefied positions. Although evaluating the potential of occurring soil liquefaction in a large earthquake was commonly conducted by using an engineering method. In this paper, we show that the potential of soil liquefaction can be evaluated by using the velocities variations of seismic waves as well. In addition, the seismic method can be applied more efficiently to a broader region.
目錄
致謝....................................i
中文摘要.................................ii
Abstract................................iii
目錄.....................................iv
圖目錄...................................vi
表目錄...................................ix
第一章 緒論...............................1
1.1研究動機與目的..........................1
1.2土壤液化之介紹..........................6
1.2.1何謂土壤液化&土壤液化現象之力學機制......6
1.2.2土壤液化發生條件.......................7
1.2.3土壤液化之災害.........................7
1.3研究區域概述.............................9
1.3.1地形與地質概況.........................9
1.3.2水系與地下水...........................9
1.3.3研究區域之活動斷層-新化斷層..............10
1.4本文介紹.................................20
第二章 研究方法..............................21
2.1研究方法.................................21
2.2測線設計與資料收集........................22
2.3震測資料分析與處理流程.....................31
2.3.1多波道主動式震源表面波波速分析(MASW)......31
2.3.2折射震測分析............................33
第三章 資料處理結果...........................42
3.1測線BS-1.................................43
3.2測線BS-2.................................50
3.3測線BS-3.................................53
3.4測線BS-4.................................56
3.5測線BS-5.................................59
3.6測線BS-6.................................62
3.7測線BS-7.................................65
第四章 討論與結論.............................68
4.1討論.....................................68
4.1.1 S波速度構造............................68
4.1.2 P波速度構造............................71
4.1.3 S波與P波波速變化比較之結果...............71
4.1.4 泊松比(Poisson's Ratio)................73
4.1.5 土壤液化評估方法........................73
4.2結論......................................80
4.3未來工作與展望.............................81
參考文獻.....................................82


參考文獻

中央氣象局、中央研究院地科所(1999)台灣十大災害地震圖集。

經濟部中央地質調查所(2010)20100304地震地質調查報告。共86頁。

陳銘鴻(2002)土壤液化成因、災害與復健。臺灣之活動斷層與地震災害研討會論文集,107~123頁。

何春蓀(1986)台灣地質概論暨台灣地質圖說明書。經濟部中央地質調查所。

吳俊磊(2012)304桃源地震台南新化土壤液化案例探討。淡江大學土木工程研究所碩士學位論文,共147頁。

張麗旭、周敏、陳培源(1947)民國35年12月5日台南之地震。台灣省地質調查所彙刊,第1號,11~18頁。

陳文山、李錫堤、陳于高(2002)地震地質調查及活動斷層資料庫建置—槽溝開挖與古地震研究計畫(1/5)(上冊)。經濟部中央地質調查所研究報告,共107頁。

陳文山、李錫堤、石瑞銓、楊小青、楊志成、顏一勤、劉力豪、張徵正、侯進雄(2004b)新化斷層的構造特性與古地震研究。經濟部中央地質調查所特刊,第15號,111~119頁。

饒瑞鈞、胡植慶、洪日豪、余致義(2005)地震地質調查及活動斷層資料庫建置—活動斷層監測系統計畫(4/5)。經濟部中央地質調查所研究報告94-10號,共147頁。

饒瑞鈞、胡植慶、洪日豪、余致義(2006)地震地質調查及活動斷層資料庫建置—活動斷層監測系統計畫(5/5)。經濟部中央地質調查所研究報告95-10號。

經濟部中央地質調查所特刊第17號(2007),新化斷層,95~108頁。

Kearey, P., Brooks, M. and Hill, I. (2011), An Introduction to Geophysical Exploration, Blackwell publishing, pp. 262.

Ishihara, K., (1985) Stability of Natural Deposit During Earthquakes, Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1. pp. 321-376.

Hayashi, K. and Suzuki, H. (2004), CMP cross-correlation analysis of multi-channel surface-wave data, Exploration Geophysics, 35: 7-13.

Park, C.B., Miller, R.D. and Xia, J. (1999), Multichannel analysis of surface waves, Geophysics, 64(3): 800-803.

Xia, J., Chen, C., Tian, G., Miller, R.D., and Ivanov, J. (2005), Resolution of highfrequency Rayleigh-wave data, Journal of Engineering and Environmental Geophysics, Special Issue: Seismic Surface Waves, 10(2): 99-110.

Xia, J., Miller, R.D. and Park, C.B. (1999), Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64(3): 691-700.

中央氣象局地震觀測網
http://www.cwb.gov.tw/V7/earthquake/rtd_eq.htm

經濟部中央地質調查所工程地質探勘資料庫
http://210.69.81.70/imoeagis/news/index.asp

經濟部水利署水文資訊網
http://gweb.wra.gov.tw/hyis/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔