跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭宗瀚
研究生(外文):Siao, Zonghan
論文名稱:Nd-Fe-Ti-Zr-B系合金棒材與薄帶磁性、相變化及顯微結構之研究
論文名稱(外文):Magnetic properties, phase evolution, and microstructure of Nd-Fe-Ti-Zr-B series rods and ribbons
指導教授:張文成張文成引用關係
指導教授(外文):Chang, Wencheng
口試委員:張文成蔡佳霖張晃暐
口試委員(外文):Chang, WenchengTsai, JailinChang, Huangwei
口試日期:2012-06-14
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:197
中文關鍵詞:外加磁場塊狀永磁合金棒材
外文關鍵詞:Nd2Fe14BBulk hard magnet
相關次數:
  • 被引用被引用:2
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本實驗第一部分採用銅膜鑄造法製作直徑為1.1 mm,長度為1.6 mm之合金棒材,在合金棒材淬冷過程中,施以一平行長軸方向10 kOe磁場,探討棒材中不同冷卻速率區域受磁場作用後磁特性提升之程度差異。實驗結果顯示,磁場效應在冷卻速率最慢的區域磁石所提升磁性之程度最高,由未施磁場的Br = 5.6 kG,iHc = 5.9 kOe,(BH)max = 5.2 MGOe提升至Br = 5.5 kG,iHc = 9.1 kOe, (BH)max = 5.8 MGOe。
其次,以Nd9.5-1.5xFebal.Ti2.5Zr0.5B15+2x (x=0、1、2、3、4)合金系統。探討不同之Nd與B之比例對於直徑0.9 mm之合金棒材與銅輪轉速10 m/s下製作合金薄帶之磁性、相組成及微觀結構之影響。結果顯示棒材與薄帶皆隨著x的提高,其軟磁t-Fe3B與o-Fe3B相比率隨之增加、2:14:1相比率隨之下降,使得4πM12 kOe隨之上升、iHc隨之下降的趨勢。而當熱處理溫度提高,其t-Fe3B相之比率隨之下降,而o-Fe3B相比率隨之增加。棒材與薄帶之最佳磁特性出現於成分為Nd9.5Febal.Ti2.5Zr0.5B15,其磁特性分別為 Br = 6.1 kG、iHc = 11 kOe及(BH)max = 7.2 MGOe 及Br = 7.2 kG、iHc = 13.4 kOe及(BH)max =10 MGOe。
最後,比較Nd9.5Febai.Ti2.5Zr0.5B23與Nd6.5Y3Febai.Ti2.5Zr0.5B23合金棒材於不同直徑(0.9 - 2.5 mm)下之特性差異。結果顯示兩成分合金棒材隨尺寸提升其磁特性皆明顯下降。但添加Y之Nd6.5Y3Febai.Ti2.5Zr0.5B23合金棒材,其非晶形成能力明顯提升,當棒材直徑為2.5 mm且經750 ◦C熱處理後仍保有優異之磁性,其Br = 5.0 kG、iHc = 10.6 kOe及(BH)max = 4.7 MGOe。

In order to simplify the manufacturing the processes for making isotropic magnets, we adopted the copper mould casting method to fabricate Nd-Fe-B-type alloy rods. At first, the effect of external magnetic field applied solidification on the magnetic properties of Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5 rods with different cooling rate has been studied. Applying external magnetic field during solidification could refine the grain size of the rods, resulting in the improvement of magnetic properties. Nevertheless, it is found that the slower the cooling rate, the larger the effect of external field on the magnetic properties enhancement of the bulk magnets is.
Second, magnetic properties, phase evolution, and microstructure of Nd9.5-1.5xFebal.Ti2.5Zr0.5B15+2x (x=0、1、2、3、4) rods and ribbons are studied. For both rods and ribbons, with increasing x, 4πM12kOe increases and iHc decreases due to the increase of the volume fraction of t-Fe3B、o-Fe3B phase and the decrease of 2:14:1 phase, while the volume fraction of t-Fe3B phase may decrease and o-Fe3B phase increase with increasing the annealing temperature. The optimal magnetic properties of Br = 6.1 kG, iHc = 11 kOe, (BH)max = 7.2 MGOe and Br = 7.2 kG, iHc = 13.4 kOe, (BH)max =10 MGOe could be obtained for Nd9.5Febal.Ti2.5Zr0.5B15 rod and ribbon, respectively.
Finally, the magnetic properties and microstructure of Nd9.5Febai.Ti2.5Zr0.5B23 and Nd6.5Y3Febai.Ti2.5Zr0.5B23 alloy with various diameters (0.9 - 2.5 mm) are compared. The magnetic properties of both series alloys are decreased with the increase of diameter, but the glass forming ability is obviously enhanced by Y addition. As a result, the rod magnet with a diameter of 2.5 mm annealed at 750 ◦C could also exhibit attractive magnetic properties arisen from its finer microstructure. The Br = 5.0 kG, iHc = 10.6 kOe, and (BH)max = 4.7 MGOe were attained for Nd6.5Y3Febai.Ti2.5Zr0.5B23 rod magnet.

摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XV

第一章 緒論 1
1-1 磁性材料的簡介 1
1-2稀土永磁材料之簡介 6
1-3 R-Fe-B複合奈米晶永磁材料 11
1-4 R2Fe14B之顯微結構與基本特性 18
1-5 磁性棒材發展與文獻回顧 20
1-6 研究動機與目的 27
第二章 理論基礎 29
2-1 基本磁學理論 29
2-1-1磁性來源 29
2-1-2磁性分類 30
2-1-3磁交互作用與磁異向性 34
2-2磁滯曲線 37
2-3 消磁場105 39
2-4交換耦合效應 41
第三章 實驗方法 47
3-1 實驗流程 47
3-2 合金棒材製備與薄帶製備 48
3-2-1合金熔煉 48
3-2-2銅模鑄造法 49
3-2-3孔徑選擇 51
3-2-4融熔旋淬法 52
3-2-5熱處理 53
3-3 量測分析 54
3-3-1 磁性量測(VSM) 54
3-3-1 磁性量測(PPMS) 55
3-3-2 熱磁分析儀(TMA) 57
3-3-4 XRD結構鑑定 58
3-3-5 顯微組織觀察(SEM) 58
3-3-6 顯微組織觀察(TEM) 58
3-4合金成份 59
第四章結果與討論 61
4-1外加磁場對Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5不同冷卻速率區域合金棒材之影響 61
4-2 Nd9.5-1.5xFebal.Ti2.5Zr0.5B15+2x合金棒材經不同熱處理條件磁性、相變化及微觀結構之研究 69
4-2-1 Nd9.5-1.5xFebal.Ti2.5Zr0.5B15+2x合金棒材直接鑄造下磁性、相變化及微觀結構之研究 70
4-2-2 Nd8Febal.Ti2.5Zr0.5B17合金棒材經不同熱處理條件下磁性、相變化及微觀結構之研究 79
4-2-3 Nd6.5Febal.Ti2.5Zr0.5B19合金棒材經不同熱處理條件下磁性、相變化及微觀結構之研究 92
4-3 Nd9.5-1.5xFebal.Ti2.5Zr0.5B15+2x合金薄帶經不同熱處理條件磁性、相變化及微觀結構之研究 105
4-3-1 直接淬冷下Nd9.5-1.5xFebal.Ti2.5Zr0.5B15+2x合金薄帶的磁性、相變化及微觀結構之探討 105
4-3-2 Nd9.5Febal.Ti2.5Zr0.5B15合金薄帶經不同熱處理條件下磁性、相變化及微觀結構之研究 109
4-3-3 Nd8Febal.Ti2.5Zr0.5B17合金薄帶經不同熱處理條件下磁性、相變化及微觀結構之研究 113
4-3-4 Nd6.5Febal.Ti2.5Zr0.5B19合金薄帶經不同熱處理條件下磁性、相變化及微觀結構之研究 117
4-3-5 Nd5Febal.Ti2.5Zr0.5B21合金薄帶經不同熱處理條件下磁性、相變化及微觀結構之研究 122
4-3-6 Nd3.5Febal.Ti2.5Zr0.5B23合金薄帶經不同熱處理條件下磁性、相變化及微觀結構之研究 127
4-4 元素Y與La對於Nd9.5-xYxFebal.Ti2.5Zr0.5B15合金系統之影響 133
4-4-1 Y置換對Nd9.5-xYxFebal.Ti2.5Zr0.5B15合金棒材之影響 134
4-4-2不同直徑之Nd9.5Febal.Ti2.5Zr0.5B23及Nd6.5Y3Febal.Ti2.5Zr0.5B23合金棒材磁性、相變化及顯微結構之比較 139
4-4-3不同直徑之Nd6.5Y3Febal.Ti2.5Zr0.5B23及Nd6.5La3Febal.Ti2.5Zr0.5B23合金棒材磁性、相變化及顯微結構之比較 150
4-5 綜合討論 155
4-5-1 Nd9.5-1.5xFebal.Ti2.5Zr0.5B15+2x合金棒材及薄帶之綜合討論 155
4-5-2不同直徑之Nd9.5Febal.Ti2.5Zr0.5B23、Nd6.5Y3Febal.Ti2.5Zr0.5B23及Nd6.5La3Febal.Ti2.5Zr0.5B23合金棒材之綜合討論 166
4-5-3 與其他研究等方性R-Fe-B塊材之結果比較 168
第五章 結論 170
參考文獻 173


1.何開元, 北京:冶金工業出版社, 85 (1991).
2.J. Hall, A. Fenochi and M. Eternad, 13th Int. Workshop on RE Magnet & their Applications (1994).
3.W. M. Hubbard, E. Adams and J. V. Gilfrich, J. Appl. Phys. 31, 368 (1960).
4.G. Hoffer and K. Strnat, IEEE Trans. Magn. 2, 487 (1996).
5.K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38, 1001 (1967).
6.K. J. Strnat, Cobalt 36, 133 (1967).
7.E. A. Nesbitt, R. H. Willens, R. C. Sherwood, E. Buehler and J. H. Wernick, Appl. Phys. Lett. 12 (11), 361-362 (1968).
8.Velge, W. A. J. T. and e. al., J. Appl. Phys. 39, 336 (1968).
9.Buschow, K. H. J. and e. al., Philips Tech Rew 29, 1717 (1968).
10.Das and D. K., IEEE. Trans. On magn.Trans. On magn., MAG-5, 3, 214 (1969).
11.B. M. G. and e. al., Cobalt No. 50, 11 (1971).
12.D. L. Martin and e. al., Cobalt, No. 50, 11 (1971).
13.A. C. Epmopehko and e. al., IEEE Trans. Magn. 17, 499 (1973).
14.T. Ojima and e. al., J. Appl. Phys. 4, 671 (1977).
15.J. J. Croat, Appl. Phys. Lett. 37 (12), 1096-1098 (1980).
16.J. J. Croat, J.Appl. Phys. 52 (3), 2509-2511 (1981).
17.J. J. Croat, Appl. Phys. Lett. 39 (4), 357-358 (1981).
18.N. C. Koon and B. N. Das, Appl. Phys. Lett. 39 (10), 840-842 (1981).
19.J. J. Becker, J. Appl. Phys. 55 (6), 2067-2072 (1984).
20.G. C. Hadjipanayis, R. C. Hazelton and K. R. Lawless, J. Appl. Phys. 55 (6), 2073-2077 (1984).
21.A. E. Clark, H. S. Belson and N. Tamagawa, Phys. Lett.A 42 (2), 160-162 (1972).
22.A. E. Clark, Appl. Phys. Lett. 23 (11), 642-644 (1973).
23.H. H. Stadelmaier, H. K. Park and Z. Metallkde, 72, 417 (1981).
24.J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton, J. Appl. Phys. 55 (6), 2078-2082 (1984).
25.D. J. Sellmyer, A. Ahmed, G. Muench and G. Hadjipanayis, J. Appl. Phys. 55 (6), 2088-2090 (1984).
26.M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura, J. Appl. Phys. 55 (6), 2083-2087 (1984).
27.L. Häggström, A. Seidel and H. Fjellvåg, Journal of Magnetism and Magnetic Materials 97 (1–3), 251-255 (1991).
28.日本產經新聞四月十六日報 (1991).
29.R. D. S. o. N. D. Y. Kaneko, Sumitomo Special Metals Co., Ltd., 日本應用磁氣學會誌 24 (No. 1), 13 (2000).
30.W. Rodewald, B. Wall, M. Katter and K. Uestuener, IEEE Trans.Magn. 39, 2932 (2003).
31.A. Sakamoto, T. Hidaka, C. Ishizaka, N. Uchida and A. Fukuno, Trans. Mater. Res. Soc. Jap.
32.Y. Matsuura, J. Magn. Magn. Mater.
33.E. C. Stoner and E. P. Wohlfarther, Phil. Trans. Roy. Soc. A-240, 599 (1948).
34.周壽增, 稀土永磁材料及其應用, 北京機械工業出版社, 111 (1990).
35.A. Manaf, R. A. Buckley, H. A. Davies and M. Leonowicz, J. Magn. Magn. Mater. 101 (1–3), 360-362 (1991).
36.J. Bauer, M. Seeger, A. Zern and H. Kronmuller, J. Appl. Phys. 80 (3), 1667-1673 (1996).
37.R. Coehoorn, D. B. de Mooij and C. de Waard, J. Magn. Magn. Mater. 80 (1), 101-104 (1989).
38.H. Kanekiyo, M. Uehara and S. Hirosawa, IEEE Trans. Magn. 29, 2863 (1993).
39.R. Coehoorn, D. B. Mooij, J. P. W. Duchateau and K. H. Buschow, J. J. de Phys 49 (C8), 669 (1988).
40.E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
41.Z.-h. Cheng, B.-g. Shen, F.-w. Wang, L. Cao, J.-g. Zhao, W.-s. Zhan, M.-x. Mao, J.-j. Sun, F.-s. Li and Y.-d. Zhang, Phys. Rev. B 51 (18), 12433-12438 (1995).
42.Z. H. Cheng, B. G. Shen, M. X. Mao and J. J. Sun, Phys. Rev. B 52, 9247 (1995).
43.S. Bao-gen, Y. Lin-yuan, Z. Jun-xian, W. Feng, N. Tai-shan, Z. Jian-gao, G. Hui-qun and Z. Wen-shan, J. Magn. Magn. Mater. 96 (1–3), 335-340 (1991).
44.B.-g. Shen, J.-x. Zhang, L.-y. Yang, F. Wo, T.-s. Ning, S.-q. Ji, J.-g. Zhao, H.-q. Guo and W.-s. Zhan, J. Magn. Magn. Mater. 89 (1–2), 195-200 (1990).
45.S. Hirosawa, H. Kanekiyo and M. Uehara, J. Αppl. Phys. 73 (10), 6488-6490 (1993).
46.S. Hirosawa and H. Kanekiyo, Mater. Sci. Eng. Α 217/218, 367 (1996).
47.H. Kanekiyo, M. Uehara and S. Hirosawa, Mater. Sci. Eng. Α 181/182, 868 (1994).
48.K. Kajiwara, K. Hono and S. Hirosawa, Mater. Trans. JIM 42 1858 (2001).
49.D. H. Ping, K. Hono and S. Hirosawa, J. Αppl. Phys. 83 (12), 7769-7775 (1998).
50.D. H. Ping, K. Hono, H. Kanekiyo and S. Hirosawa, IEEE Trans. Magn. 35, 3262 (1999).
51.M. Rajasekhar, D. Akhtar and S. Ram, J. Phys. D: Appl. Phys. 43 (13), 135004 (2010).
52.B. D. Cullity, Introduction to magnetic materials, Addison-Wesley Publishing Company, Inc. 207 (1972).
53.T. Schrefl, J. Fidler and H. Kronmüller, Phys. Rev. B 49 (9), 6100-6110 (1994).
54.A. Manaf, R. A. Buckley and H. A. Davies, J. Magn. Magn. Mater. 128 (3), 302-306 (1993).
55.G. C. Hadjipanayis and L. Withanawasam, IEEE Trans. Magn. 31, 3596 (1995).
56.I. Panagiotopoulos, L. Withanawasam, A. S. Murthy, G. C. Hadjipanayis, E. W. Singleton and D. J. Sellmyer, J. Appl. Phys. 79 (8), 4827-4829 (1996).
57.Y. Q. Wu, D. H. Ping, K. Hono, M. Hamano and A. Inoue, Journal of Applied Physics 87 (12), 8658-8665 (2000).
58.X. Y. Xiong, Y. Q. Wu and K. Hono, Proceeding on the 17th International Workshop on Rare Earth Magnets and Their Applications, 796 (2002).
59.W. C. Chang and D. M. Hsing, Journal of Applied Physics 79 (8), 4843-4845 (1996).
60.W. C. Chang, D. M. Hsing, B. M. Ma and C. O. Bounds, IEEE Trans. Magn. 32, 4425 (1996).
61.W. C. Chang, S. H. Wu, B. M. Ma and C. O. Bounds, J. Magn. Magn. Mater. 167 (1–2), 65-70 (1997).
62.W. C. Chang, S. H. Wu, B. M. Ma and C. O. Bounds, J. Αppl. Phys. 81 (8), 4453-4455 (1997).
63.W. C. Chang, S. H. Wu, B. M. Ma, C. O. Bounds and S. Y. Yao, J. Αppl. Phys. 83 (4), 2147-2151 (1998).
64.W. C. Chang, D. Y. Chiou, S. H. Wu, B. M. Ma and C. O. Bounds, Αppl. Phys. Lett. 72 (1), 121-123 (1998).
65.W. C. Chang, S. H. Wang, S. J. Chang and M. Y. Tsai, IEEE Trans. Magn. 35, 3265 (1999).
66.W. C. Chang, S. H. Wang, S. J. Chang and Q. Chen, IEEE Trans. Magn. 36, 3312 (2000).
67.W. C. Chang, S. H. Wang, S. J. Chang and H. W. Chang, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 605 (2000).
68.W. C. Chang, I. A. Chen, S. J. Chang and C. H. Yu, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 613 (2000).
69.V. Neu and L. Schultz, J. Αppl. Phys. 90 (3), 1540-1544 (2001).
70.L. H. Lewis and V. Panchanathan, J. Αppl. Phys. 85 (8), 4883-4885 (1999).
71.X. K. Sun, J. Zhang, Y. Chu, W. Liu, B. Cui and Z. Zhang, Αppl. Phys. Lett. 74 (12), 1740-1742 (1999).
72.J. Bauer, M. Seeger, A. Zern and H. Kronmuller, J. Αppl. Phys. 80 (3), 1667-1673 (1996).
73.P. Saravanan, D. A. Babu and V. Chandrasekaran, Intermetallics 651-656 19 (2011).
74.J. F. Herbst, J. J. Croat, F. E. Pinkerson and W. B. Yelon, Phys. Rev. B 29, 4173 (1984).
75.C. Abache and H. Oesterreicher, J. Αppl. Phys. 57 (8), 4112-4114 (1985).
76.W. Klement, R. H. Willens and P. Duwez, Nature 187, 869 (1960).
77.A. Inoue, Y. Shinohara and J. S. Gook, Mater. Trans. JIM 36, 1427 (1995).
78.A. Inoue, T. Zhang, W. Zhang and A. Takeuchi, Mater. Trans. JIM 37, 99 (1996).
79.A. Inoue, T. Zhang and A. Takeuchi, Mater. Trans. JIM 37, 1731 (1996).
80.W. Zhang and A. Inoue, J. Appl. Phys. 91 (10), 8834-8836 (2002).
81.P. C. Pawlik and H. A. Davies, Scripta Mater. 49, 755 (2003).
82.M. Marinescu, P. C. Pawlik, H. A. Davies, H. Chiriac and J.Optoelectron, Adv. Mater. 6(2), 603 (2004).
83.M. Marinescu, H. Chiriac and M. Grigoras, J. Magn. Magn. Mater. 290–291, Part 2 (0), 1267-1269 (2005).
84.P. Pawlik, K. Pawlik, H. A. Davies, W. Kaszuwara, J. J. Wysłocki, N. Harrison and I. Todd, J. Alloys and Compds. 423 (1–2), 99-101 (2006).
85.J. Zhang, K. Y. Lim, Y. P. Feng and Y. Li, Scripta Mater. 56, 943 (2007).
86.X. Tan, H. Xu, Q. Bai and Y. Dong, Appl. Phys. Lett. 91 (25), 252501-252503 (2007).
87.Z. Ahmad, S. Tao, T. Ma, G. Zhao and M. Yan, J. Alloys and Compds. 509 (36), 8952-8957 (2011).
88.X. H. Cui, Z. W. Liu, X. C. Zhong, H. Y. Yu and D. C. Zeng, J. Appl. Phys. 111 (7), 07B508-503 (2012).
89.H. W. Chang, M. F. Shih, C. W. Chang, C. C. Hsieh, Y. K. Fang, W. C. Chang and A. C. Sun, J. Appl. Phys. 103 (7), 07E105-103 (2008).
90.H. W. Chang, Y. T. Cheng, C. W. Chang, C. C. Hsieh, Z. H. Guo, W. C. Chang and A. C. Sun, J. Appl. Phys. 105 (7), 07A742-743 (2009).
91.H. W. Chang, J. Y. Gan, C. C. Hsieh, X. G. Zhao and W. C. Chang, J. Appl. Phys. 107 (9), 09A740-743 (2010).
92.C. Wang, Y. S. Lai, C. C. Hsieh, W. C. Chang, H. W. Chang and A. C. Sun, J. Appl. Phys. 109 (7), 07A715-713 (2011).
93.林偉棋, NdFeMB系合金棒材磁性、相變化及顯微結構之研究 國立中正大學碩士論文 (2011).
94.A. Inoue, T. Zhang and A. Takeuchi, IEEE Trans. Magn. 33, 3814 (1997).
95.A. Peker and W. L. Johnson, Appl. Phys. Lett. 63 (17), 2342-2344 (1993).
96.P. Duwez and S. C. H. Lin, J. Appl. Phys. 38 (10), 4096-4097 (1967).
97.R. Hasegawa, Phys. Lett.A 38 (1), 5-7 (1972).
98.M. Nose and T. Masumoro, Sci. Rep. Res. Inst. Tohoku Univ. 28, 232 (1980).
99.A. Inoue, A. Takeuchi and B. Shen, Mater. Trans. JIM 42, 970 (2001).
100.W. Zhang and A. Inoue, Appl. Phys. Letters. 80 (9), 1610-1612 (2002).
101.Y. Long, W. Zhang, X. Wang and A. Inoue, J. Appl. Phys. 91 (8), 5227-5229 (2002).
102.H. W. Chang, M. F. Shih, C. W. Chang, C. C. Hsieh and Y. T. Cheng, Scripta materialia 59, 227 (2008).
103.施梅芬, 直接冷卻RFeMB合金棒材之磁性、相變化及顯為結構研究,國立中正大學碩士論文 (2007).
104.張文成, 磁性技術手冊, P.54 (2002).
105.陳士堃, 磁性技術手冊, P.21 (2002).
106.B.D.Cullity, “Introduction to Magnetic Materials”, P.58 (1972).
107.E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
108.O. Henkel, Phys. Stat. Sol. 7, 919 (1964).
109.E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).
110.P. E. Kelly, K. O’Grady, P. I. Mayo and R. W. Chantrell, IEEE Trans. Magn. 25, 388 (1989).
111.傅喬玟, 國立中央大學碩士論文 (2007).
112.陳翔竣, GdAlFeM (M=Tb, Dy, Ho, Er, Ge andMn)薄帶之磁卡效應研究,國立中正大學碩士論文 (2010).
113.Y. Kong and F. Li, Phys. Rev. B 56 (6), 3153-3158 (1997).
114.M. Takahashi, M. Koshimura and T. Abuzuka, Jpn. J. Appl. Phys. 20, 1821-1832 (1981).
115.W. Zhang and A. Inoue, Appl. Phys. Lett. 80, 1610-1612 (2002).
116.M. Marinescu, H. Chiriac and M. Grigoras, J. Magn. Magn. Mater. 290-291, 1267-1269 (2005).
117.J. Zhang, K. Y. Lim and Y. Li, Scripta Mater. 56, 943-946 (2007).
118.Q. Wu, A. R. Yan, H. L. Ge, P. Y. Zhang, X. K. Hu and Y. H. Liu, J. Appl. Phys. 109, 07A739. (2011).
119.X. H. Tan, H. Xu, Q. Bai and Y. D. Dong, Appl. Phys. Lett. 91, 252501 (2007).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊