跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李重瑾
研究生(外文):Li, Chung-Jin
論文名稱:鋁合金輪圈鍛造流動行為數值模擬
指導教授:林派臣敖仲寧敖仲寧引用關係
指導教授(外文):Lin, Pai-ChenAoh, Jong-Ning
口試委員:林派臣敖仲寧郭瑞昭劉德騏
口試委員(外文):Lin, Pai-ChenAoh, Jong-NingKuo, Jui-ChaoLiu, De-Shin
口試日期:2013-07-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:128
中文關鍵詞:鋁合金鍛造鍛流線流動行為再結晶EBSD
外文關鍵詞:Aluminum alloyForgingFlow curvesMaterial flow behaviorRecrystallizationEBSD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:953
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:0
鍛造的目的是以塑性加工的方式將金屬鍛壓直接成型減少後續的加工。且經鍛造之連續塑性成形於工件內部產生鍛流線以及再結晶而改變顯微組織能使金屬強度提升。鍛造加工的關鍵除了工件材料的機械性質以外,模具的設計與鍛造製程的規劃都是很重要的,鍛造期間鍛件內材料之流動行為對成形性及缺陷以及未來使用壽命等皆有很大的影響。
本研究利用數值模擬分析軟體SIMUFACT模擬6061鋁合金輪圈鍛造製程,探討鍛壓過程胚料之應變、溫度、鍛流線、流動速度、分流及停滯等現象,並深入探討材料於各流動方向之速度變化、水平與垂直鍛流線與應變之關係及分佈,且與實際鍛件對照比較,驗證數值模擬準確性。藉由進一步改變修改摩擦係數及模具形狀,探討修改摩擦係數對鍛壓過程胚料之流動行為、鍛流線分佈及流速變化的影響,以及修改模具幾何形狀對應變、溫度、鍛流線、流動行為的影響。
此外對輪圈粗胚剖面進行電子背向散射繞射(EBSD)分析,探討晶粒經鍛造變形後於各輪圈部位之晶粒方向性、晶界角度差異性及再結晶現象並與各位置鍛流線形態做比較,探討材料流動行為與分流現象是否與晶粒取向間有關聯。

The purpose of metal forging is to form the metal parts into a desired shape with direct molding,which could reduce subsequent machining processing. Forging process generates continuous flow lines in workpiece and changes the microstructure through recrystallization, which can enhance the strength of workpiece. In addition to the material properties of workpiece, mold design and forging process parameters are crucial to the success of forging. Material flow behavior during forging also have a great impact on formability and defects and fatigue life of products.
  In this study, numerical simulation by using SIMUFACT software was applied to simulate the forging process of Al 6061 alloy wheels. The effective strain and temperature distribution, material flow lines, flow velocity, separation of material flow and stagnation phenomenon were investigated, The relationships between flow directions flow velocity variation, metal flow line density and strain distribution were discussed. Comparison between the real forging results and numerical simulation is made to verify the accuracy of prediction. The effects of the coefficient of friction and mold modification on the flow behavior of materials, material flow line density, flow velocity, strain and temperature, distribution were discussed.
  In addition, electronic backscatter diffraction (EBSD) analysis was performed on cross section of wheel to explore the grain orientation and angles between grain boundaries and recrystallization phenomena after deformation by forging. The EBSD results were compared with the material flow line and separation of material to explore a possible relationship between grain orientation and material flow phenomena.

目 錄
摘 要 2
Abstract 3
致 謝 4
目 錄 5
圖目錄 8
表目錄 13
第一章 緒論 14
1-1前言 14
1-2文獻回顧與歸納 15
1-2-1鍛造成形性與鍛流線研究 15
1-2-2鍛造缺陷研究 22
1-2-3EBSD晶粒晶界研究 26
1-3研究動機與目的 32
第二章 鍛造製程簡介 33
2-1 鍛造的種類 33
2-1-1 依施力來源分類 33
2-1-2 依受力形態分類 34
2-1-3 依模具型式分類 34
2-1-4 依工作溫度分類 34
2-1-5 鍛造優點 35
2-2 再結晶之概念 36
2-2-1 靜態再結晶 36
2-2-2 動態再結晶 36
2-3 摩擦與潤滑 40
2-3-1 金屬塑性加工中摩擦的特點與作用 40
2-3-2 金屬塑性加工摩擦與潤滑理論 41
2-3-3 摩擦係數 43
2-3-4 摩擦係數的測定方法 43
2-4 鍛造之塑性力學基礎 45
2-4-1 塑流應力 45
2-4-2 真實應力與真實應變 45
2-4-3 降伏準則 46
2-4-4 塑性變形理論 48
2-4-5 等效應力和等效應變 50
2-5 力學解析 53
2-6 SIMUFACT有限元素分析軟體簡介 60
2-6-1 軟體介紹 60
2-6-2 軟體適用領域 60
2-6-3 軟體特點 60
第三章 研究方法與步驟 62
3-1 研究步驟 62
3-2 研究流程圖 63
3-3 實驗材料 64
3-3-1 Gleeble實驗材料 64
3-3-2 真實應力-應變曲線 64
第四章 數值模擬分析 68
4-1 鍛造輪圈製程2D數值模擬分析 68
4-2 胚料性質 69
4-3 網格與鍛流線建立 70
4-4 鍛壓參數 71
第五章 結果與討論 72
5-1 輪圈鍛造數值模擬分析 72
5-1-1 摩擦係數變化之數值模擬分析結果 76
5-1-2 修改模具後模擦係數變化之數值模擬分析結果 92
5-1-3 修改模具及改變摩擦係數條件之結果討論 108
5-2 輪圈粗胚切剖面EBSD分析 109
5-3 輪圈粗胚試片衝擊試驗結果 117
5-4 綜合結果討論 119
第六章 結果歸納與未來工作 122
6-1 結論 122
6-2 未來工作 123
第七章 參考文獻 124

[1]M. S. Joun, S. W. Lee, J. H. Chung, “Finite element analysis of a multi-stage axisymmetric forging process”, Journal of Machine Tools & Manufacture, Vol.38, 1998, pp.843-854.
[2]P. Petrov, V. Perfilov, S. Stebunov, “Prevention of lap formation in near net shape isothermal forging technologyof part of irregular shape made of aluminium alloy A92618”, Journal of Materials Processing Technology, Vol.177, 2006, pp.218-223.
[3]D. Wan-peng, C. Jun, “3D FEA simulation of 4A11 piston skirt isothermal forging process”, Trans. Nonferrous Met. SOC. China, Vol.18, 2008, pp.1196-1200.
[4]J. J. Park, H. S. Hwang, “Preform design for precision forging of an asymmetric rib-web type component”, Journal of Materials Processing Technology, Vol.187-188, 2007, pp.595-439.
[5]D. Shan, W. Xu, C. Si, Y. Lu, “Research on local loading method for an aluminium-alloy hatch with cross ribs and thin webs”, Journal of Materials Processing Technology, Vol.187-188, 2007, pp.480-485.
[6]V. Vazquez, T. Altan, “Die design for flashless forging of complex parts”, Journal of Materials Processing Technology, Vol.98, 2000, pp.81-89.
[7]S.K. Choi, M.S. Chun, C. J. Van Tyne, Y. H. Moona, “Optimization of open die forging of round shapes using FEM analysis”, Journal of Materials Processing Technology, Vol.172, 2006, pp.88-95.
[8]C.G. Kang, J. W. Bae, “Numerical simulation of mold filling and deformation behavior in rheology forming process”, Journal of Mechanical Sciences, Vol.50, 2008, pp.944-955.
[9]J. H. Song, Y. T. Im, “Process design for closed-die forging of bevel gear by finite element analyses”, Journal of Materials Processing Technology, Vol.192-193, 2007, pp.1-7.
[10]Y. Zhang, D. Shan, F. Xu, “Flow lines control of disk structure with complex shape in isothermal precision forging”, Journal of Materials Processing Technology, Vol.209, 2009, pp.745-753.
[11]M.S. Joun, H. G. Moon, I. S. Choi, M. C. Lee, B. Y. Jun, “Effects of friction laws on metal forming processes”,Tribology International, Vol.42, 2009, pp.311-319.
[12]D. Shan, F. Liu, W. Xu, Y. Lu, “Experimental study on process of precision forging of an aluminium-alloy rotor”, Journal of Materials Processing Technology, Vol.170, 2005, pp.412-415.
[13]Z. Yuxunand, Y. Youping, L. Yun, H. Shiquan “Simulation and experiment research on forging flow lines for aluminum alloy wheelhub”, Journal of Central South University (Science and Technology), Vol.42, No.7, 2011.
[14]S. C. V. Lim, M. S. Yong, “Plane-strain forging of wrought magnesium alloy AZ31”, Journal of Materials Processing Technology, Vol.171, 2006, pp.393-398.
[15]Z. Gao, R. V. Grandhi, “Microstructure optimization in design of forging processes”, Journal of Machine Tools & Manufacture, Vol.40, 2000, pp.691-711.
[16]H. Zhang, L. Li, D. Yuan, D. Peng, “Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures”, Materials Characterization, Vol.58, 2007, pp.168-173.
[17]W. G. Cho, C. G. Kang, “Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys”, Journal of Materials Processing Technology, Vol.105, 2007, pp.269-277.
[18]D. Zhi-ming, C. Gang, H. Fei, C. Guang-xiang, L. Jun, L. Hong-wei, Z. Xin, X. Shui-sheng, “Homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging”, Trans. Nonferrous Met. Soc. China, Vol.21, 2011, pp.2384-2390.
[19]G. Banaszek, A. Stefanik, “Theoretical and laboratory modelling of the closure of metallurgical defects during forming of a forging”, Journal of Materials Processing Technology, Vol.177, 2006, pp.238-242.
[20]L. Cheng, Z. Li-wen, “Numerical simulation on forging process of TC4 alloy mounting parts”, Trans. Nonferrous Met. SOC. China, Vol.16, 2006, pp.1386-1390.
[21]H. Kim, T. Yagi, M. Yamanaka, “FE simulation as a must tool in cold/warm forging process and tool design”, Journal of Materials Processing Technology, Vol.98, 2000, pp.143-149.
[22]M.J. Ward, B.C. Miller, K. Davey, “Simulation of a multi-stage railway wheel and tyre forming process”, Journal of Materials Processing Technology, Vol.80-81, 1998, pp.206-212.
[23]M. Koc, V. Vazquez, T. Witulski, T. Altan, “Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys”, Journal of Materials Processing Technology, Vol.59, 1996, pp.106-112.
[24]L. Khizhnyakova, M. Ewering, G. Hirt, K. Bobzin, N. Bagcivan, “Metal flow and die wear in semi-solid forging of steel using coated dies”, Trans. Nonferrous Met. Soc. China20, Vol.20, 2010, pp.954-960.
[25]Y. Liu, T. N. Baker, “A comparison of experimental and computer-simulated isothermal upset forging of IMI685 titanium alloy”, Materials Science and Engineering, Vol.205, 1996, pp.117-126.
[26]N. Saito, A. Watazu, M. Hakamada, H. Iwasaki, M. Sakamoto, “Improvement in strength and ductility of magnesium alloy parts by hot forging”, Journal of Japan Institute of Light Metals, Vol.60, 2010, pp.88-92.
[27]O. Sitdikov, T.Sakai, A. Goloborodko, H. Miura,” Grain fragmentation in a coarse-grained 7475 Al alloy during hot deformation”, Scripta Materialia, Vol.51, pp.175-129.
[28]W. H. Van Geertruyden, W. Z. Misiolek, P. T. Wang,” Grain structure evolution in a 6061 aluminum alloy during hot torsion”, Materials Science and Engineering, Vol.419, 2006, pp.105-48.
[29]S. Ringeval, D. Piot, C. Desrayaud, J.H. Driver, “Texture and microtexture development in an Al–3Mg–Sc(Zr) alloy deformed by triaxial forging”, Acta Materialia, Vol.54, pp. 3095-3105.
[30]S. Gourdet, F. Montheillet,” An experimental study of the recrystallization mechanism during hot deformation of aluminium”, Materials Science and Engineering, Vol.283, pp. 274-288.
[31]S. T. Adedokun, T. A. Fashanu, S. Oyebanji, “Characteristics of Commercially Pure Aluminum 1020 after Simple Compression Process”, International Journal of Engineering and Technology Vol.2, pp.1648-1656.
[32]李銘秋,”鋁合金輪圈鍛造成形性與晶粒演化分析”,國立中正大學機械所碩士論文,民國101年
[33]柯忠和、江益璋,“鍛造”,全華科技圖書股份有限公司,民國88年。
[34]許源泉,“塑性加工學”,全華書局,民國99年。
[35]余煥騰、陳適範,“金屬塑性加工學”,全華書局,民國101年。
[36]趙志業,“金屬塑性變形與軋制理論”,冶金工業出版社,民國97年。
[37]R. E, R. Hill, R. Abbaschian, “Physical Metallurgy Principles”, Boston : PWS-Kent Pub, 1992, pp.243-261.
[38]A. M. Elwazri, P. Wanjara, and S. Yue, “Metadynamic and Static Recrystallization of Hypereutectoid Steel”, ISIJ, Vol.43, 2003, No.7, pp.1080-1088.
[39]顏瑞泰,“非對稱壓延加工問題之有限元素分析”,國立中央大學機械所碩士論文,民國89年。
[40]黃嘉榮,“中立半徑模式對圓環鍛粗加工上界限解的影響”,國立中央大學機械所碩士論文,民國94年。
[41]Reiner Kopp, Herbert Wiegels, “金屬塑性成形導論”,高等教育出版社,民國99年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊