跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莫子京
研究生(外文):Chee Keng Mok
論文名稱:流行性感冒A型病毒神經氨酸酶之基因體與功能分析
論文名稱(外文):Neuraminidase of Influenza A Virus: Genomic and Functional Analysis
指導教授:施信如施信如引用關係
指導教授(外文):S. R. Shih
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:105
中文關鍵詞:流感A型病毒神經氨酸酶聚合高保留位點NA酵素活性
外文關鍵詞:Influenza A virusNeuraminidaseOligomerizationConserved residuesNA enzymatic activity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
神經氨酸酶(NA)是流行性感冒病毒膜表上的同源四聚體醣蛋白質,其扮演著在感染過程中讓病毒顆粒解離宿主細胞的角色。由於源自細菌的單體NA就能發揮很好的酵素活性,而已知的流感病毒NA為何得維持四聚體結構尚待探究。本研究自基因庫中收集了2827條NA的氨基酸序列,藉此分析全部的NA亞型,並進一步以反轉錄法證實了28個高度保留的氨基酸序列位點中有21個位點對流感病毒的存活非常重要。神經氨酸酶除了提供重要的酵素活性外,大部份影響病毒存活的高保留位點都座落在NA聚合作用的介面上,由此發現NA的聚合作用對病毒存活是必要的。經研究發現,前述高保留位點在突變後並不影響NA的酵素活性和其在細胞內的定位,但卻影響了NA聚合作用的穩定性。同時,R140A/M也被證實會與負責單碳途徑轉移的絲氨酸羥甲基轉移酶2(SHMT2)作用。然而,在過去十年中以NA為標靶的抗病毒藥物已被廣泛實施,以致A型流感病毒的抗藥株在世界各地迅速擴展和蔓延。因此,進一步了解NA的生物學功能,尤其是NA聚合作用的重要性,以提供更多信息予抗流感病毒學上的發展。
Neuraminidase (NA) is a homotetramer viral surface glycoprotein that is essential for virus releasing during influenza virus infection. It has not been well explored why influenza NA should form a tetramer since the bacterial monomer NA itself already exhibits excellent NA enzymatic activity. A consensus-based scheme has been used to align 2827 NA amino acid sequence collected from GenBank. We concentrated on 28 highly conserved residues among 9 NA subtypes and identified 21 out of the 28 positions as crucial residues for viral survival by reverse genetics. Besides the importance of maintaining NA enzymatic activity, many of these conserved residues were found to locate at the oligomerization interface, suggesting that the oligomerization of NA is essential for viral viability. Further investigation showed that those mutations did not affect NA enzymatic activity and NA cellular localization, but the stability of NA oligomerization. Moreover, a one-carbon pathway transferase -- serine hydroxymethyltransferase 2 (SHMT2) was identified as being associated with R140A/M. While antivirals targeting NA have been widely implemented in the past decade, drug-resistant strains of influenza A viruses have evolved and spread rapidly worldwide. Increased understanding of NA biological functions, in particular, the crucial role of NA oligomerization, could fulfill the knowledge of influenza virus in order to development of antiviral infection.
Table of Contents

指導教授推薦書 i
口試委員會審定書 ii
國家圖書館博碩士論文電子檔案上網授權書 iii
長庚大學博碩士論文著作授權書 iv
Acknowledgments v
中文摘要 vi
Abstract vii
Abbreviations viii
Table of Contents ix
Table of Tables and Figures xi
Table of Appendix xii
CHAPTER I INTRODUCTION 1
1.1 Epidemiology of Influenza A Virus 1
1.2 Human Infection caused by Avian Influenza A Virus 2
1.3 Structure of Influenza A Virus 3
1.4 Influenza A Virus Neuraminidase 4
1.5 Function of Influenza A Virus Neuraminidase 6
1.5.1 Function of Neuraminidase Globular Head 6
1.5.2 Function of Neuraminidase Cytoplasmic Tail 6
1.5.3 Function of Neuraminidase Stalk 7
1.5.4 Other Function of Neuraminidase 7
1.6 Inhibition of Influenza A Virus Neuraminidase .8
1.7 Bacterial Neuraminidase (Sialidase) 10
1.8 Mammalian Neuraminidase (Sialidase) .11
1.9 Objective of the Study 11
CHAPTER II MATERIALS AND METHODS 13
2.1 Sequence analysis and protein structure modeling 13
2.2 Cell lines 13
2.3 Generation of recombinant viruses and plaque assay 14
2.4 Site-directed mutagenesis of NA mutants 14
2.5 RNA extraction and reverse transcription-polymerase chain reaction (RT-PCR) 14
2.6 Plaque assay in MDCK cells. 15
2.7 Preparation of FLAG-fused NA protein and western blotting 15
2.8 Analysis of NA enzymatic activity 16
2.9 Confocal microscopy 17
2.10 Computational analysis of protein structure dynamics 18
2.11 Stability of NA dimer/tetramers 18
2.12 Identification of NA associated cellular proteins 19
CHAPTER III RESULTS 21
3.1 In silico analysis of the highly conserved NA residues 21
3.2 Virus rescue of NA mutations on the conserved amino acid residues 22
3.3 Measurement of Ala-substituted NA enzymatic activity 24
3.4 Localization of NA and series mutants in HeLa cells 25
3.5 Distribution of highly conserved NA residues 26
3.6 Structural modeling of Ala substitution on the NA oligomerization interface 27
3.7 Stability of the dimer/tetramer of nonrescued NA mutants 30
3.8 The R140A mutant is specifically associated with SHMT2 32
CHAPTER IV DISCUSSION AND CONCLUSION 35
References 41
Tables 52
Figures and Legends 56
Appendix 73
Curriculum Vitae 92
Table of Tables and Figures
Table 1. The 28 amino acid residues in N1 53
Table 2. Virus rescue of NA mutations on the conserved amino acid residues 54
Table 3. The critical functions of conserved NA residues 55
Fig. 1. A consensus-based approach for the identification of highly conserved amino acid residues in the NA protein 58
Fig. 2. Plaque morphology of recombinant Ala-substituted NA viruses 59
Fig. 3. Measurement of Ala-substituted NA enzymatic activity 60
Fig. 4. Localization of WT NA and nonrescued mutants in HeLa cells62
Fig. 5. Simulation of the NA structure of A/WSN/33 using a SWISS modeling server, with the positions of 28 highly conserved residues labeled 63
Fig. 6. Effects of alanine substitution on the oligomerization interface according to computational analysis 65
Fig. 7. Stability of the oligomerization of nonrescued NA mutants 66
Fig. 8. Immunoprecipitation of cellular proteins using FLAG-NA mutants 68
Fig. 9. The R140A mutant specifically associated with SHMT2 69
Fig. 10. NA activity of R140 series mutants in 293T cells 71
Fig. 11. Key amino acid residues bearing the NA dimer/tetramer
structure 72
Table of Appendix
Appendix Table S1.Dedimerization of mutated NA proteins in Category 3 74
Appendix Table S2.The 28 amino acid residues in N1 updated to Dec, 2011 75
Appendix Fig. S1. A timeline of influenza pandemics and medical advances during the past century 76
Appendix Fig. S2. Illustration of influenza virus particle and viral infection 77
Appendix Fig. S3. Proposed steps in the maturation of influenza virus NA 78
Appendix Fig. S5. Genetic and structural relationships between neuraminidases from different influenza viruses 80
Appendix Fig. S6. Illustration of viral neuraminidase activity 81
Appendix Fig. S7. Cytoplasmic tails and stalk of Neuraminidase managed virion shape and replication rate 82
Appendix Fig. S8. Mechanism of Development of Resistance to Oseltamivir 83
Appendix Fig. S9. Crystal structures of bacterial NA and mechanism of mammalian NA oligomerization 84
Appendix Fig. S10. Map of pFLAG-CMV2-WSN-NA vector 86
Appendix Fig. S11. Map of pcDNA-SHMT2-Mys-His vector 87
Appendix Fig. S12. Schema of a divide-and-conquer, consensus-based analysis for surveying the highly conserved amino acid residues of NA proteins 88
Appendix Fig. S13. Comparison of predicted Ala-substituted NA mutant structure 91
(2013, June 4, 2013). Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO. from http://www.who.int/influenza/human_animal_interface/EN_GIP_20130604CumulativeNumberH5N1cases.pdf.
Abed, Y., Baz, M., Boivin, G. (2006) Impact of neuraminidase mutations conferring influenza resistance to neuraminidase inhibitors in the N1 and N2 genetic backgrounds. Antivir Ther. 11(8): 971-976.
Adamo, J.E., Liu, T., Schmeisser, F., Ye, Z. (2009) Optimizing viral protein yield of influenza virus strain A/Vietnam/1203/2004 by modification of the neuraminidase gene. J Virol. 83(9): 4023-4029.
Alexander, D.J. (2007) An overview of the epidemiology of avian influenza. Vaccine. 25(30): 5637-5644.
Appaji Rao, N., Ambili, M., Jala, V.R., Subramanya, H.S., Savithri, H.S. (2003) Structure-function relationship in serine hydroxymethyltransferase. Biochim Biophys Acta. 1647(1-2): 24-29.
Arden, K.E., Mackay, I.M. (2013) Avian influenza A (H7N9) virus: Can it help us more objectively judge all respiratory viruses? J Clin Virol. DOI: 10.1016/j.jcv.2013.05.015.
Awasthi, M., Batra, J., Kateriya, S. (2012) Disulphide bridges of phospholipase C of Chlamydomonas reinhardtii modulates lipid interaction and dimer stability. PLoS One. 7(6): e39258.
Bastien, N., Antonishyn, N.A., Brandt, K., Wong, C.E., Chokani, K., Vegh, N., Horsman, G.B., Tyler, S., Graham, M.R., Plummer, F.A., Levett, P.N., Li, Y. (2010) Human infection with a triple-reassortant swine influenza A(H1N1) virus containing the hemagglutinin and neuraminidase genes of seasonal influenza virus. J Infect Dis. 201(8): 1178-1182.
Bautista, E., Chotpitayasunondh, T., Gao, Z., Harper, S.A., Shaw, M., Uyeki, T.M., Zaki, S.R., Hayden, F.G., Hui, D.S., Kettner, J.D., Kumar, A., Lim, M., Shindo, N., Penn, C., Nicholson, K.G. Writing Committee of the W. H. O. Consultation on Clinical Aspects of Pandemic Influenza(2010) Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med. 362(18): 1708-1719.
Beigel, J.H., Farrar, J., Han, A.M., Hayden, F.G., Hyer, R., de Jong, M.D., Lochindarat, S., Nguyen, T.K., Nguyen, T.H., Tran, T.H., Nicoll, A., Touch, S., Yuen, K.Y. (2005) Avian influenza A (H5N1) infection in humans. N Engl J Med. 353(13): 1374-1385.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Res. 28(1): 235-242.
Bloom, J.D., Gong, L.I., Baltimore, D. (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science. 328(5983): 1272-1275.
Bloom, J.D., Nayak, J.S., Baltimore, D. (2011) A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One. 6(7): e22201.
Bonten, E.J., Campos, Y., Zaitsev, V., Nourse, A., Waddell, B., Lewis, W., Taylor, G., d'Azzo, A. (2009) Heterodimerization of the sialidase NEU1 with the chaperone protective protein/cathepsin A prevents its premature oligomerization. J Biol Chem. 284(41): 28430-28441.
Bortz, E., Westera, L., Maamary, J., Steel, J., Albrecht, R.A., Manicassamy, B., Chase, G., Martinez-Sobrido, L., Schwemmle, M., Garcia-Sastre, A. (2011) Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. MBio. 2(4).
Bright, R.A., Medina, M.J., Xu, X., Perez-Oronoz, G., Wallis, T.R., Davis, X.M., Povinelli, L., Cox, N.J., Klimov, A.I. (2005) Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 366(9492): 1175-1181.
Castrucci, M.R., Kawaoka, Y. (1993) Biologic importance of neuraminidase stalk length in influenza A virus. J Virol. 67(2): 759-764.
Chang, S.C., Cheng, Y.Y., Shih, S.R. (2006) Avian Influenza Virus: The Threat of A Pandemic. Chang Gung Med J. 29: 130-134.
Chiang, C., Chen, G.W., Shih, S.R. (2008) Mutations at alternative 5' splice sites of M1 mRNA negatively affect influenza A virus viability and growth rate. J Virol. 82(21): 10873-10886.
Colman, P.M. (2009) New antivirals and drug resistance. Annu Rev Biochem. 78: 95-118.
Colman, P.M., Hoyne, P.A., Lawrence, M.C. (1993) Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J Virol. 67(6): 2972-2980.
Colman, P.M., Varghese, J.N., Laver, W.G. (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 303(5912): 41-44.
Cox, N.J., Subbarao, K. (2000) Global epidemiology of influenza: past and present. Annu Rev Med. 51: 407-421.
De Clercq, E. (2006) Antiviral agents active against influenza A viruses. Nat Rev Drug Discov. 5(12): 1015-1025.
Fauci, A.S. (2006) Pandemic influenza threat and preparedness. Emerg Infect Dis. 12(1): 73-77.
Fields, B.N., Knipe, D.M., Howley, P.M., Griffin, D.E. (2001). Orthomyxoviruses, Fields' Virology, 4 ed. Philadelphia : Lippincott Williams &; Wilkins, pp. 1487-1531.
Fodor, E., Devenish, L., Engelhardt, O.G., Palese, P., Brownlee, G.G., Garcia-Sastre, A. (1999) Rescue of influenza A virus from recombinant DNA. J Virol. 73(11): 9679-9682.
Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B., Osterhaus, A.D. (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol. 79(5): 2814-2822.
Fujii, Y., Goto, H., Watanabe, T., Yoshida, T., Kawaoka, Y. (2003) Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci U S A. 100(4): 2002-2007.
Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., Xu, X., Lu, H., Zhu, W., Gao, Z., Xiang, N., Shen, Y., He, Z., Gu, Y., Zhang, Z., Yang, Y., Zhao, X., Zhou, L., Li, X., Zou, S., Zhang, Y., Li, X., Yang, L., Guo, J., Dong, J., Li, Q., Dong, L., Zhu, Y., Bai, T., Wang, S., Hao, P., Yang, W., Zhang, Y., Han, J., Yu, H., Li, D., Gao, G.F., Wu, G., Wang, Y., Yuan, Z., Shu, Y. (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 368(20): 1888-1897.
Garcia-Sastre, A., Palese, P. (1995) The cytoplasmic tail of the neuraminidase protein of influenza A virus does not play an important role in the packaging of this protein into viral envelopes. Virus Res. 37(1): 37-47.
Garten, R.J., Davis, C.T., Russell, C.A., Shu, B., Lindstrom, S., Balish, A., Sessions, W.M., Xu, X., Skepner, E., Deyde, V., Okomo-Adhiambo, M., Gubareva, L., Barnes, J., Smith, C.B., Emery, S.L., Hillman, M.J., Rivailler, P., Smagala, J., de Graaf, M., Burke, D.F., Fouchier, R.A., Pappas, C., Alpuche-Aranda, C.M., Lopez-Gatell, H., Olivera, H., Lopez, I., Myers, C.A., Faix, D., Blair, P.J., Yu, C., Keene, K.M., Dotson, P.D., Jr., Boxrud, D., Sambol, A.R., Abid, S.H., St George, K., Bannerman, T., Moore, A.L., Stringer, D.J., Blevins, P., Demmler-Harrison, G.J., Ginsberg, M., Kriner, P., Waterman, S., Smole, S., Guevara, H.F., Belongia, E.A., Clark, P.A., Beatrice, S.T., Donis, R., Katz, J., Finelli, L., Bridges, C.B., Shaw, M., Jernigan, D.B., Uyeki, T.M., Smith, D.J., Klimov, A.I., Cox, N.J. (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 325(5937): 197-201.
Gog, J.R., Afonso Edos, S., Dalton, R.M., Leclercq, I., Tiley, L., Elton, D., von Kirchbach, J.C., Naffakh, N., Escriou, N., Digard, P. (2007) Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res. 35(6): 1897-1907.
Goto, H., Kawaoka, Y. (1998) A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A. 95(17): 10224-10228.
Goto, H., Wells, K., Takada, A., Kawaoka, Y. (2001) Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. J Virol. 75(19): 9297-9301.
Gotte, G., Libonati, M. (2008) Oligomerization of ribonuclease A under reducing conditions. Biochim Biophys Acta. 1784(4): 638-650.
Gottschalk, A. (1957) Neuraminidase: the specific enzyme of influenza virus and Vibrio cholerae. Biochim Biophys Acta. 23(3): 645-646.
Gubareva, L.V., Kaiser, L., Hayden, F.G. (2000) Influenza virus neuraminidase inhibitors. Lancet. 355(9206): 827-835.
Gubareva, L.V., Webster, R.G., Hayden, F.G. (2002) Detection of influenza virus resistance to neuraminidase inhibitors by an enzyme inhibition assay. Antiviral Res. 53(1): 47-61.
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
Hatta, M., Gao, P., Halfmann, P., Kawaoka, Y. (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 293(5536): 1840-1842.
Hirst, G.K. (1941) The Agglutination of Red Cells by Allantoic Fluid of Chick Embryos Infected with Influenza Virus. Science. 94(2427): 22-23.
Hoffmann, E., Stech, J., Guan, Y., Webster, R.G., Perez, D.R. (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 146(12): 2275-2289.
Holmes, E.C., Ghedin, E., Miller, N., Taylor, J., Bao, Y., St George, K., Grenfell, B.T., Salzberg, S.L., Fraser, C.M., Lipman, D.J., Taubenberger, J.K. (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 3(9): e300.
Hsiao, Y.S., Parker, D., Ratner, A.J., Prince, A., Tong, L. (2009) Crystal structures of respiratory pathogen neuraminidases. Biochem Biophys Res Commun. 380(3): 467-471.
Hung, H.C., Tseng, C.P., Yang, J.M., Ju, Y.W., Tseng, S.N., Chen, Y.F., Chao, Y.S., Hsieh, H.P., Shih, S.R., Hsu, J.T. (2009) Aurintricarboxylic acid inhibits influenza virus neuraminidase. Antiviral Res. 81(2): 123-131.
Ilyushina, N.A., Bovin, N.V., Webster, R.G. (2012) Decreased neuraminidase activity is important for the adaptation of H5N1 influenza virus to human airway epithelium. J Virol. 86(9): 4724-4733.
Ison, M.G. (2011) Antivirals and resistance: influenza virus. Curr Opin Virol. 1(6): 563-573.
Jin, H., Leser, G.P., Zhang, J., Lamb, R.A. (1997) Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 16(6): 1236-1247.
Johnson, N.P., Mueller, J. (2002) Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic. Bull Hist Med. 76(1): 105-115.
Kageyama, T., Fujisaki, S., Takashita, E., Xu, H., Yamada, S., Uchida, Y., Neumann, G., Saito, T., Kawaoka, Y., Tashiro, M. (2013) Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill. 18(15): 20453.
Kim, S., Oh, D.B., Kang, H.A., Kwon, O. (2011) Features and applications of bacterial sialidases. Appl Microbiol Biotechnol. 91(1): 1-15.
Kobasa, D., Rodgers, M.E., Wells, K., Kawaoka, Y. (1997) Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks. J Virol. 71(9): 6706-6713.
Lai, J.C., Chan, W.W., Kien, F., Nicholls, J.M., Peiris, J.S., Garcia, J.M. (2010) Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase. J Gen Virol. 91(Pt 9): 2322-2330.
Laver, W.G., Valentine, R.C. (1969) Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology. 38(1): 105-119.
Le, Q.M., Kiso, M., Someya, K., Sakai, Y.T., Nguyen, T.H., Nguyen, K.H., Pham, N.D., Ngyen, H.H., Yamada, S., Muramoto, Y., Horimoto, T., Takada, A., Goto, H., Suzuki, T., Suzuki, Y., Kawaoka, Y. (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature. 437(7062): 1108.
Li, Q., Sun, X., Li, Z., Liu, Y., Vavricka, C.J., Qi, J., Gao, G.F. (2012) Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus. Proc Natl Acad Sci U S A. 109(46): 18897-18902.
Li, Q., Zhou, L., Zhou, M., Chen, Z., Li, F., Wu, H., Xiang, N., Chen, E., Tang, F., Wang, D., Meng, L., Hong, Z., Tu, W., Cao, Y., Li, L., Ding, F., Liu, B., Wang, M., Xie, R., Gao, R., Li, X., Bai, T., Zou, S., He, J., Hu, J., Xu, Y., Chai, C., Wang, S., Gao, Y., Jin, L., Zhang, Y., Luo, H., Yu, H., Gao, L., Pang, X., Liu, G., Shu, Y., Yang, W., Uyeki, T.M., Wang, Y., Wu, F., Feng, Z. (2013) Preliminary Report: Epidemiology of the Avian Influenza A (H7N9) Outbreak in China. N Engl J Med. DOI: 10.1056/NEJMoa1304617.
Lo, Y., Chen, W., Huang, W., Lin, Y., Liu, M., Kuo, H., Chuang, J., Yang, J., Liu, M., Wu, H., Yang, C., Chou, J., Chang, F. (2013) Surveillance of avian influenza A(H7N9) virus infection in humans and detection of the first imported human case in Taiwan, 3 April to 10 May 2013. Euro Surveill. 18(20).
Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D. (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol. 78(22): 12665-12667.
Mishin, V.P., Hayden, F.G., Gubareva, L.V. (2005) Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors. Antimicrob Agents Chemother. 49(11): 4515-4520.
Mitnaul, L.J., Castrucci, M.R., Murti, K.G., Kawaoka, Y. (1996) The cytoplasmic tail of influenza A virus neuraminidase (NA) affects NA incorporation into virions, virion morphology, and virulence in mice but is not essential for virus replication. J Virol. 70(2): 873-879.
Mok, C.K. (2007). Alanine-Scanning Mutations in Consensus Regions of Influenza A Virus Neuraminidase. (Master: Full article), Graduate Institute of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan. pp. 11-16.
Moscona, A. (2005) Neuraminidase inhibitors for influenza. N Engl J Med. 353(13): 1363-1373.
Moscona, A. (2009) Global transmission of oseltamivir-resistant influenza. N Engl J Med. 360(10): 953-956.
Nicholas, K., Nicholas, H.J. (1997) GeneDoc: a tool for editing and annotating multuple sequence aligments.
Nicholls, H. (2006) Pandemic influenza: the inside story. PLoS Biol. 4(2): e50.
Nishikawa, T., Shimizu, K., Tanaka, T., Kuroda, K., Takayama, T., Yamamoto, T., Hanada, N., Hamada, Y. (2012) Bacterial neuraminidase rescues influenza virus replication from inhibition by a neuraminidase inhibitor. PLoS One. 7(9): e45371.
Oxford, J.S., Novelli, P., Sefton, A., Lambkin, R. (2002) New millennium antivirals against pandemic and epidemic influenza: the neuraminidase inhibitors. Antivir Chem Chemother. 13(4): 205-217.
Palese, P., Compans, R.W. (1976) Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol. 33(1): 159-163.
Palese, P., Tobita, K., Ueda, M., Compans, R.W. (1974) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology. 61(2): 397-410.
Parrish, C.R., Kawaoka, Y. (2005) The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu Rev Microbiol. 59: 553-586.
Potier, M., Mameli, L., Belisle, M., Dallaire, L., Melancon, S.B. (1979) Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem. 94(2): 287-296.
Reid, A.H., Fanning, T.G., Janczewski, T.A., Taubenberger, J.K. (2000) Characterization of the 1918 "Spanish" influenza virus neuraminidase gene. Proc Natl Acad Sci U S A. 97(12): 6785-6790.
Reid, A.H., Janczewski, T.A., Lourens, R.M., Elliot, A.J., Daniels, R.S., Berry, C.L., Oxford, J.S., Taubenberger, J.K. (2003) 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerg Infect Dis. 9(10): 1249-1253.
Reid, A.H., Taubenberger, J.K., Fanning, T.G. (2004) Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol. 2(11): 909-914.
Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn, G.M., Hay, A.J., Gamblin, S.J., Skehel, J.J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 443(7107): 45-49.
Saito, T., Taylor, G., Webster, R.G. (1995) Steps in maturation of influenza A virus neuraminidase. J Virol. 69(8): 5011-5017.
Scholtissek, C., Rohde, W., Von Hoyningen, V., Rott, R. (1978) On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 87(1): 13-20.
Schrodinger, LLC (2010). The PyMOL Molecular Graphics System, Version 1.3r1.
Schwede, T., Kopp, J., Guex, N., Peitsch, M.C. (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31(13): 3381-3385.
Seto, J.T., Rott, R. (1966) Functional significance of sialidose during influenza virus multiplication. Virology. 30(4): 731-737.
Shaw, M.L., Stone, K.L., Colangelo, C.M., Gulcicek, E.E., Palese, P. (2008) Cellular proteins in influenza virus particles. PLoS Pathog. 4(6): e1000085.
Shih, K.C., Lin, C.Y., Zhou, J., Chi, H.C., Chen, T.S., Wang, C.C., Tseng, H.W., Tang, C.Y. (2011) Development of novel 3D-QSAR combination approach for screening and optimizing B-Raf inhibitors in silico. J Chem Inf Model. 51(2): 398-407.
Shih, S.R., Chen, G.W., Yang, C.C., Yang, W.Z., Liu, D.P., Lin, J.H., Chiu, S.C., Chen, H.Y., Tsao, K.C., Huang, C.G., Huang, Y.L., Mok, C.K., Chen, C.J., Lin, T.Y., Wang, J.R., Kao, C.L., Lin, K.H., Chen, L.K., Eng, H.L., Liu, Y.C., Chen, P.Y., Lin, J.S., Wang, J.H., Lin, C.W., Chan, Y.J., Lu, J.J., Hsiung, C.A., Chen, P.J., Su, I.J. (2005) Laboratory-based surveillance and molecular epidemiology of influenza virus in Taiwan. J Clin Microbiol. 43(4): 1651-1661.
Skehel, J. (2009) An overview of influenza haemagglutinin and neuraminidase. Biologicals. 37(3): 177-178.
Stover, P., Schirch, V. (1990) Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J Biol Chem. 265(24): 14227-14233.
Suzuki, T., Takahashi, T., Guo, C.T., Hidari, K.I., Miyamoto, D., Goto, H., Kawaoka, Y., Suzuki, Y. (2005) Sialidase activity of influenza A virus in an endocytic pathway enhances viral replication. J Virol. 79(18): 11705-11715.
Tatu, U., Braakman, I., Helenius, A. (1993) Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells. EMBO J. 12(5): 2151-2157.
Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., Turmelle, A.S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M.R., Tang, K., Rowe, L.A., Sammons, S., Xu, X., Frace, M., Lindblade, K.A., Cox, N.J., Anderson, L.J., Rupprecht, C.E., Donis, R.O. (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 109(11): 4269-4274.
Tovchigrechko, A., Vakser, I.A. (2005) Development and testing of an automated approach to protein docking. Proteins. 60(2): 296-301.
Tovchigrechko, A., Vakser, I.A. (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34(Web Server issue): W310-314.
Tran, T.H., Nguyen, T.L., Nguyen, T.D., Luong, T.S., Pham, P.M., Nguyen, V.C., Pham, T.S., Vo, C.D., Le, T.Q., Ngo, T.T., Dao, B.K., Le, P.P., Nguyen, T.T., Hoang, T.L., Cao, V.T., Le, T.G., Nguyen, D.T., Le, H.N., Nguyen, K.T., Le, H.S., Le, V.T., Christiane, D., Tran, T.T., Menno de, J., Schultsz, C., Cheng, P., Lim, W., Horby, P., Farrar, J. (2004) Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med. 350(12): 1179-1188.
Watanabe, Y., Ibrahim, M.S., Suzuki, Y., Ikuta, K. (2012) The changing nature of avian influenza A virus (H5N1). Trends Microbiol. 20(1): 11-20.
Yen, H.L., Herlocher, L.M., Hoffmann, E., Matrosovich, M.N., Monto, A.S., Webster, R.G., Govorkova, E.A. (2005) Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob Agents Chemother. 49(10): 4075-4084.
Zhang, J., Pekosz, A., Lamb, R.A. (2000) Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol. 74(10): 4634-4644.
Zhou, J., Wang, D., Gao, R., Zhao, B., Song, J., Qi, X., Zhang, Y., Shi, Y., Yang, L., Zhu, W., Bai, T., Qin, K., Lan, Y., Zou, S., Guo, J., Dong, J., Dong, L., Zhang, Y., Wei, H., Li, X., Lu, J., Liu, L., Zhao, X., Li, X., Huang, W., Wen, L., Bo, H., Xin, L., Chen, Y., Xu, C., Pei, Y., Yang, Y., Zhang, X., Wang, S., Feng, Z., Han, J., Yang, W., Gao, G.F., Wu, G., Li, D., Wang, Y., Shu, Y. (2013) Biological features of novel avian influenza A (H7N9) virus. Nature. DOI: 10.1038/nature12379.
Zhu, X., Yang, H., Guo, Z., Yu, W., Carney, P.J., Li, Y., Chen, L.M., Paulson, J.C., Donis, R.O., Tong, S., Stevens, J., Wilson, I.A. (2012) Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site. Proc Natl Acad Sci U S A. 109(46): 18903-18908.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊