跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 17:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭雅方
研究生(外文):Ya Fang Cheng
論文名稱:多次施打由GM-CSF分泌能力細胞製成之疫苗對調節性T細胞的免疫調控研究
論文名稱(外文):Study the immune modulation by regulatory T cell in multiple vaccinations of GM-CSF-secreting cell-based vaccine
指導教授:邱健泰邱健泰引用關係
指導教授(外文):J. T. Qiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:57
中文關鍵詞:疫苗顆粒單核球群落刺激生長因子調節性T細胞
外文關鍵詞:vaccineGM-CSFRegulatory T cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
免疫療法在癌症治療當中扮演相當重要的角色。早期的研究指出,以腫瘤細胞為基礎所製成的疫苗,能夠誘導具有腫瘤特異性的T細胞反應來引發系統性的抗腫瘤免疫力,且巨噬細胞聚落刺激因子(GM-CSF)也被廣泛地作為佐劑使用。在先前的研究中,我們觀察到在小鼠體內接踵DNA疫苗並嵌有GM-CSF序列修飾(codon-optimized)的質體,能誘發強力的抗體與毒殺性T細胞反應。然而對於多次施打疫苗是否會引起有效的抗腫瘤免疫性,仍然是個未知數。根據近期的研究發現,多次施打由GM-CSF分泌能力細胞所製成的疫苗,會因為調節性T細胞(Treg)的表現量增加而限制了疫苗的效價。本篇我們利用具有GM-CSF高分泌能力細胞製成的疫苗,並以不同次數的方式施打於小鼠,來觀察小鼠體內之調節性T細胞與免疫調控的關係。經輻射照射後的細胞將會被注射至小鼠皮下,並分別在施打一次、三次及五次後,進行調節性T細胞之免疫螢光染色與淋巴球再刺激試驗。根據實驗結果發現,經多次施打疫苗後,小鼠系統性的免疫反應中之調節性T細胞的表達量增加;且在HPV E7專一胜肽刺激後,小鼠體內對於GM-CSF序列修飾後之細胞製成疫苗,在僅施打一次時,其具丙型干擾素(IFN-γ)分泌能力的CD8+ T細胞表現量為最高。本篇實驗結果觀察到,多次施打高劑量的GM-CSF疫苗並無法誘導有效的抗腫瘤免疫反應。
Immunotherapy is playing a critical role in the treatment of cancers. It has been reported that tumor-cell based vaccine can induce tumor-specific T cell responses to prime systemic antitumor immunity, and GM-CSF is now widely used as an adjuvant in immunotherapy protocols. Our previous studies have shown co-immunization of plasmids encoded codon-optimized GM-CSF sequence with DNA vaccine would induce potent antibody and cytotoxic T lymphocyte responses. However, weather vaccination strategies that given multiple times would induce the effective antitumor immunity remain unclear. According to recent studies, multiple vaccinations of GM-CSF secreting tumor resulted in limiting the efficacy of vaccine by the increase level of regulatory T (Treg) cells. In our study, we used codon-optimized GM-CSF-secreting cell-based vaccine, which expressed high level GM-CSF, combined with multiple vaccination strategies to investigate the immune modulation by regulatory T (Treg) cells. Mice were subcutaneously injected with 106 irradiated cells each site, and we sacrificed mice after one-, three-, and five-times vaccinations for Treg cell staining and re-stimulation assay. The results showed increased Treg cells in systemic immune responses following multiple vaccinations. Moreover, after restimulated with E7-specific peptide, the immune cells from the mice which had one-time vaccination with codon-optimized GM-CSF-secreting cell-based vaccine showed the highest percentages of IFN-γ-secreting CD8+ T cells compared to three- or five-times vaccinations. Taken together, our data suggested that high-dose GM-CSF vaccine combined with multiple vaccinations would not induce the effective antitumor immune responses.
CHAPTER I Introduction………………………………………………1
I.1 Human papillomavirus (HPV)…………….……………………….1
I.1.1 HPV genome…………………………………………….…...1
I.1.2 HPV types………………………………………………..…..1
I.1.3 HPV viral oncogenes…………………………………………1
I.1.4 HPV vaccine……………………………………………….....2
I.2 Granulocyte-macrophage colony-stimulating factor (GM-CSF)…..3
I.2.1 Identification of GM-CSF……………………………………3
I.2.2 GM-CSF and T cells…………………………………….…...4
I.2.3 GM-CSF and tumor cell vaccine……………………….….....5
I.3 Regulatory T cell (Treg) …………………………………….…......6
I.3.1 Discovery and development…………………………….……6
I.3.2 Immunological features of Treg cells………………….…......7
I.3.3 Immunosuppressive function……………………………..….7
I.4 Specific Aims………………………………………………………8
CHAPTER II Materials and Methods………………………………...10
II.1 Cell lines…………………………………………………….10
II.2 Mice…………………………………………………………10
II.3 ELISA……………………………………………………….10
II.4 Vaccine immunization……………………………………….11
II.5 Isolation of lymphoid cells and splenocytes………………...12
II.6 Restimulation of lymphoid cells…………………………….12
II.7 Flow cytometry analysis…………………………………….12
CHAPTER III Results…………………………………………….......14
III.1 GM-CSF levels in TC-1, TC-1/wtGM, and TC-1/cGM cell
lines……………………………………………………….14
III.2 Schematic view of the experimental procedure of multiple
vaccinations……………………………………………….14
III.3 The increased splenic weight after high-dose GM-CSF
vaccine immunization………………………………….….15
III.4 The expression of regulatory T cells after multiple vaccinations with irradiated GM-CSF-secreting tumor cells……………………………………………………….16
III.5 The absolute numbers of regulatory T cells were consistent
with their expressions by flow cytometry…………………17
III.6 Multiple vaccinations with irradiated TC-1/cGM cells did not
augment the recall responses of E7-specific T cells………18
CHAPTER IV Discussion…………………………………………. .20
REFERENCE…………………………………………………………...25
Figures
Fig.1 GM-CSF levels in TC-1, TC-1/wtGM, and TC-1/cGM cell
lines………………………………………………………..35
Fig.2 Schematic view of the experimental procedure of multiple
vaccinations………………………………………………..36
Fig.3 The splenic weights of mice received multiple vaccinations……………………………………………..37
Fig.4 The expression of regulatory T cell in draining lymph nodes
after multiple vaccinations……………………………….. 38
Fig.5 The systemic immune responses of regulatory T cell after
multiple vaccinations…………………………………….. 40
Fig.6 The absolute number of Treg cell in lymphocytes and
splenocytes after multiple vaccinations…………………...42
Fig.7 Recall responses of HPV E7-specific T cells after multiple
vaccinations………………………………………………..43

Apostolou, I., Sarukhan, A., Klein, L., and von Boehmer, H. (2002). Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3, 756-763.
Baecher-Allan, C., Brown, J.A., Freeman, G.J., and Hafler, D.A. (2001). CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167, 1245-1253.
Bernard, H.U. (2005). The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses. J Clin Virol 32 Suppl 1, S1-6.
Bhattacharya, P., Gopisetty, A., Ganesh, B.B., Sheng, J.R., and Prabhakar, B.S. (2011). GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J Leukoc Biol 89, 235-249.
Bickel, M., Cohen, R.B., and Pluznik, D.H. (1990). Post-transcriptional regulation of granulocyte-macrophage colony-stimulating factor synthesis in murine T cells. J Immunol 145, 840-845.
Boon, T., Coulie, P.G., Van den Eynde, B.J., and van der Bruggen, P. (2006). Human T cell responses against melanoma. Annu Rev Immunol 24, 175-208.
Bopp, T., Becker, C., Klein, M., Klein-Hessling, S., Palmetshofer, A., Serfling, E., Heib, V., Becker, M., Kubach, J., Schmitt, S., et al. (2007). Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204, 1303-1310.
Burgess, A.W., Camakaris, J., and Metcalf, D. (1977). Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem 252, 1998-2003.
Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwnica-Worms, D.R., and Ley, T.J. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635-646.
Collison, L.W., Pillai, M.R., Chaturvedi, V., and Vignali, D.A. (2009). Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J Immunol 182, 6121-6128.
Collison, L.W., Workman, C.J., Kuo, T.T., Boyd, K., Wang, Y., Vignali, K.M., Cross, R., Sehy, D., Blumberg, R.S., and Vignali, D.A. (2007). The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566-569.
Connell, N.D. (2001). Expression systems for use in actinomycetes and related organisms. Curr Opin Biotechnol 12, 446-449.
Curotto de Lafaille, M.A., and Lafaille, J.J. (2009). Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626-635.
de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., and zur Hausen, H. (2004). Classification of papillomaviruses. Virology 324, 17-27.
Deaglio, S., Dwyer, K.M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J.F., Enjyoji, K., Linden, J., Oukka, M., et al. (2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204, 1257-1265.
Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., Jackson, V., Hamada, H., Pardoll, D., and Mulligan, R.C. (1993). Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90, 3539-3543.
Dyson, N. (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12, 2245-2262.
Dyson, N., Howley, P.M., Munger, K., and Harlow, E. (1989). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934-937.
Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., Castelli, C., Mariani, L., Parmiani, G., and Rivoltini, L. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25, 2546-2553.
Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336.
Fontenot, J.D., Rasmussen, J.P., Gavin, M.A., and Rudensky, A.Y. (2005). A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6, 1142-1151.
Ganesh, B.B., Cheatem, D.M., Sheng, J.R., Vasu, C., and Prabhakar, B.S. (2009). GM-CSF-induced CD11c+CD8a--dendritic cells facilitate Foxp3+ and IL-10+ regulatory T cell expansion resulting in suppression of autoimmune thyroiditis. Int Immunol 21, 269-282.
Gouy, M., and Gautier, C. (1982). Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10, 7055-7074.
Griffin, J.D., Cannistra, S.A., Sullivan, R., Demetri, G.D., Ernst, T.J., and Kanakura, Y. (1990a). The biology of GM-CSF: regulation of production and interaction with its receptor. Int J Cell Cloning 8 Suppl 1, 35-44; discussion 44-35.
Griffin, J.D., Spertini, O., Ernst, T.J., Belvin, M.P., Levine, H.B., Kanakura, Y., and Tedder, T.F. (1990b). Granulocyte-macrophage colony-stimulating factor and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes, and their precursors. J Immunol 145, 576-584.
Higano, C.S., Corman, J.M., Smith, D.C., Centeno, A.S., Steidle, C.P., Gittleman, M., Simons, J.W., Sacks, N., Aimi, J., and Small, E.J. (2008). Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113, 975-984.
Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
Houghton, A.N., and Guevara-Patino, J.A. (2004). Immune recognition of self in immunity against cancer. J Clin Invest 114, 468-471.
Huibregtse, J.M., Scheffner, M., and Howley, P.M. (1993). Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13, 4918-4927.
Ji, Q., Gondek, D., and Hurwitz, A.A. (2005). Provision of granulocyte-macrophage colony-stimulating factor converts an autoimmune response to a self-antigen into an antitumor response. J Immunol 175, 1456-1463.
Kawakami, Y., and Rosenberg, S.A. (1997). Human tumor antigens recognized by T-cells. Immunol Res 16, 313-339.
Kirnbauer, R., Booy, F., Cheng, N., Lowy, D.R., and Schiller, J.T. (1992). Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 89, 12180-12184.
Kreimer, A.R., Rodriguez, A.C., Hildesheim, A., Herrero, R., Porras, C., Schiffman, M., Gonzalez, P., Solomon, D., Jimenez, S., Schiller, J.T., et al. (2011). Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. J Natl Cancer Inst 103, 1444-1451.
Kudla, G., Lipinski, L., Caffin, F., Helwak, A., and Zylicz, M. (2006). High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol 4, e180.
LaCelle, M.G., Jensen, S.M., and Fox, B.A. (2009). Partial CD4 depletion reduces regulatory T cells induced by multiple vaccinations and restores therapeutic efficacy. Clin Cancer Res 15, 6881-6890.
Lesokhin, A.M., Hohl, T.M., Kitano, S., Cortez, C., Hirschhorn-Cymerman, D., Avogadri, F., Rizzuto, G.A., Lazarus, J.J., Pamer, E.G., Houghton, A.N., et al. (2012). Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 72, 876-886.
Lin, K.Y., Guarnieri, F.G., Staveley-O'Carroll, K.F., Levitsky, H.I., August, J.T., Pardoll, D.M., and Wu, T.C. (1996). Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 56, 21-26.
Miyatake, S., Otsuka, T., Yokota, T., Lee, F., and Arai, K. (1985). Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. Embo J 4, 2561-2568.
Munger, K., Phelps, W.C., Bubb, V., Howley, P.M., and Schlegel, R. (1989). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63, 4417-4421.
Munoz, N., Bosch, F.X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., and Meijer, C.J. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518-527.
Murphy, J.M., and Young, I.G. (2006). IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor. Vitam Horm 74, 1-30.
Nair, R.E., Kilinc, M.O., Jones, S.A., and Egilmez, N.K. (2006). Chronic immune therapy induces a progressive increase in intratumoral T suppressor activity and a concurrent loss of tumor-specific CD8+ T effectors in her-2/neu transgenic mice bearing advanced spontaneous tumors. J Immunol 176, 7325-7334.
Nakamura, K., Kitani, A., and Strober, W. (2001). Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194, 629-644.
Pardoll, D.M. (1998). Cancer vaccines. Nat Med 4, 525-531.
Qiu, J.T., Chang, T.C., Lin, C.T., Chen, Y.M., Li, F.Q., Soong, Y.K., and Lai, C.H. (2007). Novel codon-optimized GM-CSF gene as an adjuvant to enhance the immunity of a DNA vaccine against HIV-1 Gag. Vaccine 25, 253-263.
Ricupito, A., Grioni, M., Calcinotto, A., Hess Michelini, R., Longhi, R., Mondino, A., and Bellone, M. (2013). Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings. Cancer Res 73, 3545-3554.
Sakaguchi, S. (2001). Policing the regulators. Nat Immunol 2, 283-284.
Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562.
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155, 1151-1164.
Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., and Howley, P.M. (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129-1136.
Serafini, P., Carbley, R., Noonan, K.A., Tan, G., Bronte, V., and Borrello, I. (2004). High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64, 6337-6343.
Setoguchi, R., Hori, S., Takahashi, T., and Sakaguchi, S. (2005). Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201, 723-735.
Shannon, M.F., Gamble, J.R., and Vadas, M.A. (1988). Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci U S A 85, 674-678.
Sharp, P.M., Tuohy, T.M., and Mosurski, K.R. (1986). Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14, 5125-5143.
Sheng, J.R., Li, L., Ganesh, B.B., Vasu, C., Prabhakar, B.S., and Meriggioli, M.N. (2006). Suppression of experimental autoimmune myasthenia gravis by granulocyte-macrophage colony-stimulating factor is associated with an expansion of FoxP3+ regulatory T cells. J Immunol 177, 5296-5306.
Stewart, T.J., and Smyth, M.J. (2011). Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30, 125-140.
Tadokoro, C.E., Shakhar, G., Shen, S., Ding, Y., Lino, A.C., Maraver, A., Lafaille, J.J., and Dustin, M.L. (2006). Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 203, 505-511.
Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J., and Sakaguchi, S. (1998). Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10, 1969-1980.
Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T.W., and Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192, 303-310.
Thornton, A.M., and Shevach, E.M. (1998). CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188, 287-296.
Vasu, C., Dogan, R.N., Holterman, M.J., and Prabhakar, B.S. (2003). Selective induction of dendritic cells using granulocyte macrophage-colony stimulating factor, but not fms-like tyrosine kinase receptor 3-ligand, activates thyroglobulin-specific CD4+/CD25+ T cells and suppresses experimental autoimmune thyroiditis. J Immunol 170, 5511-5522.
Wada, H., Noguchi, Y., Marino, M.W., Dunn, A.R., and Old, L.J. (1997). T cell functions in granulocyte/macrophage colony-stimulating factor deficient mice. Proc Natl Acad Sci U S A 94, 12557-12561.
Welters, M.J., Kenter, G.G., de Vos van Steenwijk, P.J., Lowik, M.J., Berends-van der Meer, D.M., Essahsah, F., Stynenbosch, L.F., Vloon, A.P., Ramwadhdoebe, T.H., Piersma, S.J., et al. (2010). Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci U S A 107, 11895-11899.
Werness, B.A., Levine, A.J., and Howley, P.M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76-79.
Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., and Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271-275.
Zhou, G., and Levitsky, H. (2012). Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol 2012, 124187.
Zhou, J., Sun, X.Y., Stenzel, D.J., and Frazer, I.H. (1991). Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 185, 251-257.
zur Hausen, H. (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2, 342-350.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top